Defense Nuclear Agency Alexandria, VA 22310-3398 **DNA-TR-94-25** # Extended Equation-of-State for Dichlorodifluoromethane (CCI₂F₂) Alan I. Lampson Peter G. Crowell Gary P. Ganong Logicon R&D Associates P.O. Box 9377 Albuquerque, NM 87119-9377 December 1994 **Technical Report** **CONTRACT No. DNA 001-93-C-0138** Approved for public release; distribution is unlimited. 19941219 108 Description and amores & Destroy this report when it is no longer needed. Do not return to sender. PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: CSTI, 6801 TELEGRAPH ROAD, ALEXANDRIA, VA 22310-3398, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION. ### **DISTRIBUTION LIST UPDATE** This mailer is provided to enable DNA to maintain current distribution lists for reports. (We would appreciate your providing the requested information.) | ☐ Add the individual listed to your distribution list. ☐ Delete the cited organization/individual. | NOTE: Please return the mailing label from the document so that any additions, changes, corrections or deletions can be made easily. For distribution cancellation or more | |---|--| | ☐ Change of address. | information call DNA/IMAS (703) 325-1036. | | NAME: | | | ORGANIZATION: | | | OLD ADDRESS | CURRENT ADDRESS | | | | | | | | TELEPHONE NUMBER: () | | | DNA PUBLICATION NUMBER/TITLE | CHANGES/DELETIONS/ADDITIONS, etc.) (Attach Sheet if more Space is Required) | | | | | DNA OR OTHER GOVERNMENT CONTRACT NUMB | SER: | | CERTIFICATION OF NEED-TO-KNOW BY GOVERNM | MENT SPONSOR (if other than DNA): | | SPONSORING ORGANIZATION: | | | CONTRACTING OFFICER OR REPRESENTATIVE: | | | SIGNATURE: | | DEFENSE NUCLEAR AGENCY ATTN: IMAS 6801 TELEGRAPH ROAD ALEXANDRIA, VA 22310-3398 > DEFENSE NUCLEAR AGENCY ATTN: IMAS 6801 TELEGRAPH ROAD ALEXANDRIA, VA 22310-3398 ### **REPORT DOCUMENTATION PAGE** Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response including the time for reviewing instructions, searching existing data sources, | collection of information, including suggestions for in Davis Highway, Suite 1204, Arlington, VA 22202-43 | impleting and reviewing the collection of informati
reducing this burden , to Washington Headquarter
302, and to the Office of Management and Budge | on. Send comments regardin
's Services Directorate for info
it, Paperwork Reduction Proje | ig this burden estimate or any other aspect of this
ormation Operations and Reports, 1215 Jefferson
ect (0704-0188), Washington, DC 20503 | | | |---|---|---|---|--|--| | AGENCY USE ONLY (Leave blank) | 2. REPORT DATE | 3. REPORT TYPE | AND DATES COVERED | | | | | 941201 | Technical 9 | 20210 – 930521 | | | | 4. TITLE AND SUBTITLE | | | 5. FUNDING NUMBERS | | | | Extended Equation-of-State for D | ichlorodifluoromethane (CCI | ₂ F ₂) | C - DNA 001-93-C-0138
PE - 62715H | | | | 6. AUTHOR(S) | | | PR - AB | | | | Alan I. Lampson, Peter G. Crowe | ll, and Gary P. Ganong | | TA - KA
WU - DH310900 | | | | 7. PERFORMING ORGANIZATION NAME(| S) AND ADDRESS(ES) | | 8. PERFORMING ORGANIZATION REPORT NUMBER | | | | Logicon R&D Associates | | | | | | | P.O. Box 9377 | | | | | | | Albuquerque, NM 87119-9377 | | | | | | | 9. SPONSORING/MONITORING AGENCY | NAME(S) AND ADDRESS(ES) | | 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER | | | | Defense Nuclear Agency | | | AGENCY REPORT NOWBER | | | | 6801 Telegraph Road
Alexandria, VA 22310-3398 | | | DNA-TR-94-25 | | | | SPWE/Tucker | | | | | | | | | | | | | | 11. SUPPLEMENTARY NOTES This work was sponsored by the D | Nefensa Nivolaar Aganay unda | - DDT&E DMC (| Codo P 4662D | | | | AB KA EA011 1110A 25904D. | etense Nuclear Agency under | I KDI &E KWC C | Loue B4002D | | | | 12a. DISTRIBUTION/AVAILABILITY STATE | MENT | | 12b. DISTRIBUTION CODE | | | | | | | | | | | Approved for public release; distri | bution is unlimited. | | | | | | | | | | | | | 13. ABSTRACT (Maximum 200 words) | <u> </u> | | | | | | Tell tell (Manimum 200 Words) | | | | | | | A new equation-of-state for decor | | | | | | | equation-of-state is based upon equ | | | | | | | of CCI ₂ F ₂ and utilizes tables of the | | | | | | | cal property tables had an upper te the temperature range of interest. | | | | | | | and the temperature range from 20 | | | | | | | used to extend the thermochemical | | | | | | | 14. SUBJECT TERMS Equation-of-State Non-Ideal Airblast Dichlorodifluoromethane | High Pressure EOS Nuclear Blast Freon-12 High Temperature Decursor | | 15. NUMBER OF PAGES
64
16. PRICE CODE | |--|--|--|---| | 17. SECURITY CLASSIFICATION
OF REPORT | 18. SECURITY CLASSIFICATION
OF THIS PAGE | 19, SECURITY CLASSIFICATION
OF ABSTRACT | 20. LIMITATION OF ABSTRACT | | UNCLASSIFIED | UNCLASSIFIED | UNCLASSIFIED | SAR | | UNCLASSIFIED | | | |--------------------------------------|--|------| | SECURITY CLASSIFICATION OF THIS PAGE | |
 | | CLASSIFIED BY: | | | | | | | | NY/A -: IInclossified | | | | N/A since Unclassified. | | | | | | | | | | | | DECLASSIFY ON: | | | | DECLASSIFY ON: | | | | N/A since Unclassified. | and the same of th | | | | Accelian For | | | | Acces for For | | | | NIP Charles 19 | | | | 1 D + 1 D | (| | | | | | | Date of the second | ļ | | | | 1 | | | | | | | - | | | | | i | | | | | | | | | | | n i | | | | A | | | | | - | 1 | | | | ļ | İ | | | | | | | | | #### **SUMMARY** The JANAF Thermochemical Tables contained the 41 species possible as the result of the decomposition of dichlorodifluoro-methane (CCl₂F₂). The thermochemical properties needed to determine the equilibrium properties of the gas mixture were given up to a temperature of 6,000 K. To allow determination of the gas mixture properties at temperatures higher than 6,000 K, the JANAF tables were duplicated and then extended to 30,000 K. There were six species that were not calculated with standard methods and required special handling. These species therefore are not as accurate in the thermodynamic properties as the rest of the species. But as there should only be a small fraction of those six species present, the effect on the mixture properties should be minimal. The JANAF tables only carried the first positive ionization specie for each of the elements present (F, Cl, and C). At the higher temperatures and lower pressures of the equilibrium analysis, large quantities of these ions were found to be present. This indicated that additional ionization levels of each specie were required,
until there was not a significant amount of the highest ionization level present. Using the same method as that used for calculating the singly ionized elements, tables for the second, third, and fourth ionization levels of the three elements present were created. These additional nine species (F⁺⁺, F⁺⁺⁺, F⁺⁺⁺⁺, Cl⁺⁺⁺, Cl⁺⁺⁺, Cl⁺⁺⁺, Cl⁺⁺⁺, Cl⁺⁺⁺, and C⁺⁺⁺⁺) then were included in the equilibrium analysis, bringing the total number of species under consideration to 50 and allowing the equilibrium properties of the decomposed CCl₂F₂ gas mixture to be evaluated at temperatures as high as 30,000 K. For monatomic species, the data was calculated through 500,000 K while considering 31 species. The equation-of-state for the gas mixture consisting of decomposed CCl₂F₂ has been examined. Only an equilibrium calculation is feasible with the information currently available. As many as 50 species must be considered with temperatures as high as 30,000 K and pressures as low as 0.1 bar. The solution method for determining the equilibrium mixture was to use the thermochemical data to calculate an equilibrium constant for a series of reactions. Each reaction then generated a nonlinear equation involving the equilibrium constant and the species partial pressures. The resulting 50 equations were solved simultaneously to determine the amount of each specie present. With the amount of each specie known, the mixture properties at those conditions were readily calculated. ### TABLE OF CONTENTS | Sectio | n Pa | ıge | |--------|---|--| | | SUMMARY | iii | | | TABLES | vi | | 1 | INTRODUCTION | 1 | | 2 | PROBLEM DESCRIPTION AND APPROACH | 2 | | 3 | EXTENDING JANAF TABLES | 4 | | | 3.3 LINEAR POLYATOMIC GASES 3.4 NONLINEAR POLYATOMIC GASES. 3.5 SPECIAL CASES. 3.6 JANAF TABLE INPUT DATA ERRORS | 6
10
11
13
14
18
19 | | 4 | EQUATION-OF-STATE CALCULATIONS | 21 | | | 4.2 JANAF TABLES ABOVE 6,000°K 4.3 REACTIONS AND EQUILIBRIUM CONSTANTS. 4.4 CONDENSED SPECIES. 4.5 MIXTURE COMPOSITION 4.6 MIXTURE PROPERTIES. 4.7 ELEVATED TEMPERATURES 4.8 REAL GAS EFFECTS | 22
23
23
26
26
29
30
32
36 | | 5 | REFERENCES | 39 | | Apper | dix | | | A | TABLES FOR MONATOMIC, DIATOMIC, LINEAR POLYATOMIC, AND LINEAR POLYATOMIC SPECIES | 1 | | В | NOMINAL REACTIONS | 3-1 | ## **TABLES** | Table | | Page | |-------|--|------| | A-1a | Table for Monatomic Specie: Cl | A-2 | | A-1b | Calculation | A-3 | | A-2a | Table for Diatomic Specie: CF | A-4 | | A-2b | Calculation | A-5 | | A-3a | Table for Linear Polyatomic Specie: C ₂ Cl ₂ | A-6 | | A-3b | Calcualtion | A-7 | | A-4a | Table for Nonlinear Polyatomic Specie: CF ₄ | A-8 | | A-4b | Calculation | A-9 | # SECTION 1 INTRODUCTION In recent years, the Defense Nuclear Agency (DNA) has placed the emphasis of its airblast research program on high overpressure effects over real, rather than ideal, surfaces. Real surface effects include thermal and mechanical modifications of the blast wave. Thermal modification of the blast wave creates the nuclear blast precursor. Mechanical modifications can be caused by surface roughness, irregular terrain, entrained dust, and by the pressure of high-density layers above the ground surface. Such high-density layers can occur naturally from snowfall or wind deposition of vegetation debris. High-density layers also may be produced by the blow-off of the soil surface by high-energy X-rays from a nuclear explosion. To simulate the blast modification effects of high-density layers, DNA attempted to use various porous solid materials. However, there were significant difficulties encountered in calculating the behavior of these solid materials in high-pressure blast environments. For this reason, DNA chose to perform a number of blast experiments using layers of heavy gases rather than porous solids. For practical reasons, dichlorodifluoromethane (CCl₂F₂) was selected for use in several of these heavy gas-layer experiments. To perform calculations of such experiments, it is necessary to have an equation of state for CCl₂F₂. There was a limited amount of equation-of-state data, but there were significant voids in this data base. Logicon R&D Associates (RDA) identified deficiencies in the data base and the preliminary equation-of-state and then embarked upon a project to extend the available data base and create an equation-of-state suitable for use in the temperature and pressure regimes of these experiments. This report describes this project. #### SECTION 2 #### PROBLEM DESCRIPTION AND APPROACH To properly model the blast experiments, it is necessary to determine the properties of the gas used. CCl_2F_2 was placed in the experiment and was the initial gas present. However, while CCl_2F_2 is a relatively stable compound under normal conditions, it will decompose rapidly at temperatures above 2,000 K. Such temperatures are reached quickly during the experiment. Thus, the properties normally associated with CCl_2F_2 are valid during the initial portion of the experiment, but thereafter should be the properties of the gas mixture consisting of decomposed CCl_2F_2 . In order to evaluate these properties, the composition of the gas mixture must be known. If the mixture is not in equilibrium, then the rates of all the reactions needed to produce the various gas species present must be known and the properties will be a function of time as well as pressure and temperature. As there are dozens of gas species involved, and very few of the reaction rates are known, the only practical recourse is to assume that the gas mixture is in equilibrium. The properties then will no longer be a function of time. The validity of the equilibrium assumption must be evaluated separately. The preliminary CCl₂F₂ equilibrium calculations were performed by Science Applications International Corporation (SAIC). These had two difficulties. The first was that an insufficient number of species was carried in the analysis. While some of the heavier molecules that were missing had a noticeable effect on the mixture composition, the results were not wildly wrong. However, at the higher temperature end, not enough ionized species were allowed, resulting in a significantly different result. Whether these differences in composition caused significant variations in mixture properties was not examined in great detail. However, a quick look did indicate noticeable differences in the properties at high temperatures. The other problem was that the calculations were done with two different codes (CET89 and EIONY) for different temperature regimes (Ref.1). The valid temperature regions did not overlap, and actually had a significant gap between them. The results were blended together, but the blended region has an anomaly that does not correspond to a real molecule or mixture, indicating a problem with the assumptions or method used to combine the results. After evaluating the preliminary equation-of-state, Logicon RDA determined that an improved one would be necessary to properly analyze the blast experiments. To determine the equilibrium properties of the gas mixture consisting of decomposed CCl₂F₂, certain thermochemical properties must be known. These include the enthalpy, Gibbs free energy, and heat capacity of each individual gas specie. The equilibrium composition of a gas mixture can be calculated by different techniques, though each will require essentially the same properties of the individual component species. The common source for obtaining these properties is the JANAF Thermochemical Tables (Refs. 2 and 3). These tables provide several thermochemical properties of many gas species. The difficulty is that these tables have a maximum temperature of 6,000 K. In general, it is possible to use the same calculational procedures and input as those used to generate the JANAF tables and thus duplicate those tables. The calculations need not stop at the arbitrary limit of 6,000 K, but can be extended to higher temperatures (Ref. 4). Care must be used not to ignore some input terms that may have been discarded due to the limited temperatures of the JANAF tables. Using extended tables, the equilibrium constants have been calculated for all the reactions needed to determine the composition of the decomposed CCl₂F₂ gas mixture. By evaluating the many simultaneous equations that relate the equilibrium constants with a reaction, the gas composition can be calculated and then the properties determined (Ref. 5). This has been done for a wide range of temperatures and pressures using the EQUIL code, a new code developed by Logicon RDA specifically for this analysis. CCl₂F₂ also is known by the generic names refrigerant-12 and chlorofluorocarbon-12 and by several trade names including Freon-12, Fluorocarbon-12, Genetron-12, Isotron-12, and Ucon-12. # SECTION 3 EXTENDING JANAF TABLES In order to solve the equilibrium composition for CCl₂F₂, knowledge of certain thermochemical properties of each constituent specie must be available. Species that are possible to be present, and therefore must have properties available, are listed below. | CCl ₂ F ₂ | C(s) | C ₂ | e | F | |---------------------------------|------------------|--------------------------------|------------------------------|--------------------| | CF ₄ | CCI | C ₃ | C ₂ - | F ⁺ | | CCl ₄ | CCl ₂ | C ₄ | CF ⁺ | F** | | CCIF ₃ | CCl ₃ | C ₅ | CF ₂ ⁺ | \mathbf{F}^{+++} | | CCl ₃ F | CF | C ₂ Cl ₂ | CF ₃ ⁺ | F**** | | Cl ₂ | CF ₂ | C ₂ Cl ₄ | Cl ⁻ | C | | Cl | CF ₃ | C ₂ Cl ₆ | Cl ⁺ | C+ | | F ₂ | ClF | C_2F_2 | Cl ⁺⁺ | C++ | | F | ClF ₃ | C_2F_4 | Cl*** | C+++ | | C | ClF ₅ | C_2F_6 | Cl**** | C++++ | The JANAF Thermochemical
Tables provide values of various thermodynamic functions for ideal gases. These values are a function of temperature (T) only and therefore are independent of pressure. All values are normalized by the universal gas constant (R_u) . There are four general classes of gaseous molecules in the JANAF tables: monatomic, diatomic, linear polyatomic, and nonlinear polyatomic. Among the gases required for the CCl_2F_2 analysis, there also are six special cases that use variations of the standard evaluation methods. These special cases will be discussed individually. There are a few errors in the input data as listed in the 1985 JANAF tables. These will be covered in the next section. The last section discusses monatomic gases at extremely high temperatures. The thermodynamic functions of interest are the normalized molar heat capacity at constant pressure $(C_p^o(T)/R_u)$, normalized enthalpy $([H^o(T)-H^o(298.15 \text{ K})]/R_uT)$, normalized Gibbs free energy (-[G°(T)-H°(298.15 K)]/R_uT), and normalized entropy (S°(T)/R_u). Throughout this document, these normalized functions will be referred to as heat capacity, enthalpy, Gibbs energy, and entropy. The relationships between the thermodynamic functions and the partition function are: $$Q(T)$$ = Partition Function $$\frac{-[G \circ (T) - H \circ (0 K)]}{R_n T} = \ln Q(T) \qquad (Gibbs \ energy)$$ $$\frac{[H \circ (T) - H \circ (0K)]}{R_n T} = T \frac{d \ln Q(T)}{dT}$$ (Enthalpy) $$\frac{S^{o}(T)}{R_{n}} = T \frac{d \ln Q(T)}{dT} + \ln Q(T)$$ (Entropy) $$\frac{C_p^{\circ}(T)}{R_{\circ}} = T^2 \frac{d^2 \ln Q(T)}{dT^2} + 2T \frac{d \ln Q(T)}{dT}$$ (Heat capacity) The partition function usually is broken down into components associated with each energy: translation (Q_t) , electronic (Q_e) , rotation (Q_r) , and vibration (Q_v) . In addition, there may be an additional term associated with corrections for anharmonic vibrations (Q_a) . Translation is not coupled to any of the other terms and so may be freely separated from the rest. The other terms are classified as the internal partition function (Q_i) . $$Q(T) = Q_t(T) Q_i(T)$$ where $$Q_{i}(T) \; = \; \sum_{j} \; \left(Q_{e}(T)\right)_{j} \; \left(Q_{r}(T)\right)_{j} \; \left(Q_{v}(T)\right)_{j} \; \left(Q_{a}(T)\right)_{j} \label{eq:Qi}$$ The individual thermodynamic properties then can also be separated. For example, the heat capacity at constant pressure (C_n) $$\frac{C_p^{o}(T)}{R_u} = \left(\frac{C_p^{o}(T)}{R_u}\right)_t + \left(\frac{C_p^{o}(T)}{R_u}\right)_i$$ The internal partition function also is frequently separated into individual terms, although cross-coupling terms do not always make it proper to do so. It is valid, however, when only one of the partition functions has more than one term, such as when there are three electronic states, but only the ground rotation and vibration states. Thus, the above equations become $$Q(T) = Q_{\iota}(T) Q_{\iota}(T) Q_{\iota}(T) Q_{\iota}(T) Q_{\iota}(T)$$ and $$\frac{C_p^{\circ}(T)}{R_u} = \left(\frac{C_p^{\circ}(T)}{R_u}\right)_t + \left(\frac{C_p^{\circ}(T)}{R_u}\right)_t$$ #### 3.1 MONATOMIC GASES. This is the easiest class to evaluate. Additionally, this class contains the largest body of experimental data needed to support the calculations. The abundance of the necessary input data and the simplicity of the molecules and thus the calculations, make the results for the monatomic gases the most accurate beyond 6,000 K, especially for the extremely high temperatures. For the monatomic gases, there are only two contributors to the thermodynamic functions: translation and electronic. The normalized contributions from translation for the monatomic gases (and all the gases, for that matter) are: $$\frac{-[G \circ (T) - H \circ (0K)]}{R_u T} = \frac{3}{2} \ln M_r + \frac{5}{2} \ln T + \ln \frac{k}{p} \left(\frac{2\pi k}{Nh^2} \right)^{\frac{3}{2}}$$ $$\frac{[H \circ (T) - H \circ (0K)]}{R_u T} = \frac{5}{2}$$ $$\frac{S \circ (T)}{R_u} = \frac{3}{2} \ln M_r + \frac{5}{2} \ln T + \frac{5}{2} + \ln \frac{k}{p} \left(\frac{2\pi k}{N_A h^2} \right)^{\frac{3}{2}}$$ $$\frac{C_p(T)}{R} = \frac{5}{2}$$ In the above Gibbs energy and entropy equations, M_r is the molecular weight (grams/mole) of the specie. The last term is a function only of the pressure (p°) and constants (k is the Boltzmann constant, N_A is Avogadro's number, and h is the Planck constant). At one bar, it evaluates to -3.6517. (Note that this term must be evaluated using cgs units.) The contributions for the electronic states are: $$Q(T) = \sum_{i} g_{i} e^{\frac{-c_{2}\epsilon_{i}}{kT}}$$ $$\frac{-[G \circ (T) - H \circ (0K)]}{R_n T} = \ln \sum_i g_i e^{\frac{-c_2 \epsilon_i}{kT}}$$ $$\frac{[H \circ (T) - H \circ (0 K)]}{R_u T} = \frac{c_2}{T} \frac{\sum_{i} \epsilon_i g_i e^{\frac{-c_2 \epsilon_i}{kT}}}{\sum_{i} g_i e^{\frac{-c_2 \epsilon_i}{kT}}}$$ $$\frac{S^{\circ}(T)}{R_{u}} = \frac{c_{2}}{T} \frac{\sum_{i} \epsilon_{i} g_{i} e^{\frac{-c_{2} \epsilon_{i}}{kT}}}{\sum_{i} g_{i} e^{\frac{-c_{2} \epsilon_{i}}{kT}}} - \ln \sum_{i} g_{i} e^{\frac{-c_{2} \epsilon_{i}}{kT}}$$ $$\frac{C_{p}(T)}{R_{u}} = \frac{c_{2}^{2}}{T^{2}} \left[\frac{\sum_{i} \epsilon_{i}^{2} g_{i} e^{\frac{-c_{2}\epsilon_{i}}{kT}}}{\sum_{i} g_{i} e^{\frac{-c_{2}\epsilon_{i}}{kT}}} - \left[\frac{\sum_{i} \epsilon_{i} g_{i} e^{\frac{-c_{2}\epsilon_{i}}{kT}}}{\sum_{i} g_{i} e^{\frac{-c_{2}\epsilon_{i}}{kT}}} \right]^{2} \right]$$ For the above equations, ϵ_i is in units of cm⁻¹. The value of the second radiation constant $[c_2 = k/(hc)]$, where c is the speed of light in a vacuum] is 1.438786 cm-K. The input for a specie includes molecular weight, number of energy levels, and for each energy level, the energy of the level (ϵ_i) and the degeneracy of the level (g_i) . In the 1985 edition of the JANAF tables (Ref. 2), the number of levels given has been reduced to only those that affect the results at or below 6,000 K. The previous edition (Ref. 3) carried many more energy levels. An alternate set of thermochemical tables has been published (Ref. 6). In this set of tables, most of the monatomic species have been carried to 10,000 K and some to 20,000 K. However, detailed examination of the tables and comparing them with the results of this analysis indicate that this source only carried the same number of energy levels as the 1985 JANAF tables, but carried the calculations to higher temperatures. This results in a significant error above 6,000 K compared to using the terms in the 1971 JANAF edition. (The 1971 edition did combine many of the higher energy levels into much fewer terms, but this provides an adequate approximation for temperatures up to 30,000 K.) Since this alternate source was shown to provide incorrect answers for part of its temperature range, it was rejected as a source of comparison for temperatures above those in the JANAF tables. Since the 1985 JANAF tables did not contain nearly enough energy levels for accuracy above 6,000 K, another source was needed. The 1971 JANAF tables contain a much more complete input, but since some of the higher levels were combined, it was unclear what effect this might have on very high temperatures. Therefore, the energy levels and degeneracies were obtained from published atomic energy level data (Ref. 7). All energy levels were carried up to the ionization limit for each monatomic specie. All the monatomic species used for the CCl_2F_2 analysis were compared with the JANAF tables for the temperatures up to 6,000 K, and checked to within three on the last published digit, which is an error less than 0.01 percent. The calculations were then carried out to 30,000 K. Subsequently, a request was made to have results at even higher temperatures, so the calculations were run again, going up to a temperature of 500,000 K, but at much larger temperature steps than the 100 K increments used up to 30,000 K (refer to Section 3.7). During the course of the equilibrium calculations which use the extended JANAF tables, it was observed that at low pressures (0.1 bar) and high temperatures (30,000 K) there were significant amounts of the singly ionized atoms present (F⁺, Cl⁺, C⁺), which were the highest ionization levels considered at that time. Additional ionization levels were added until the species did not contribute anything to the mixture properties. This eventually resulted in including up to the fourth ionization species (F⁺⁺⁺⁺, Cl⁺⁺⁺⁺, Cl⁺⁺⁺⁺). Even more ionization species were added to give proper mixtures at the extremely high temperature requested (500,000 K). Though these multiply ionized species were not present in the JANAF tables, all the necessary energy levels and degeneracies were available (Ref. 7) to create the tables using the same method as was used for the singly ionized atoms. Also present was the ionization level of the species, used to calculate the heat of formation, which is needed for the equilibrium calculation. #### 3.2 DIATOMIC GASES. The calculations for a diatomic gas are, in general, the most complex since there are frequently multiple vibrational states in addition to multiple electronic states. For this analysis, the translational partition function was separated, but the internal partition function remained combined. Thus, all the cross-component terms were properly carried throughout the computations. The translational partition function is the same as it is for the monatomic gases. Each individual state of the electronic partition function is also the same for monatomic gases, but must be combined with the other internal partition function values at that state before the summation over all states can be performed. The electronic, rotational, vibrational, and anharmonic partition functions for diatomic molecules are given below. $$Q_{e}(T) = ge^{-\frac{c_{2}\epsilon}{T}}$$ $$Q_{r}(T) = \frac{T}{\sigma c_{2}(B_{e} - \frac{1}{2}\alpha_{e})}$$ $$u \equiv \frac{c_2}{T}(\omega_e - 2\omega_e x_e)$$ $$Q_{v}(T) =
\frac{1}{1 - e^{-u}}$$ $$Q_a(T) = \frac{1}{u} \left(\frac{8B_e}{\omega_e} \right) + \frac{1}{e^{u} - 1} \left(\frac{\alpha_e}{B_e} \right) + \frac{2x_e u}{(e_u - 1)^2}$$ In these equations, the values for σ (symmetry number), B_e (the rotational constant), α_e (first-order rotation vibration interaction constant), ω_e (vibrational fundamental for infinitesimal amplitude), and x_e (anharmonicity correction) are spectroscopic data that are part of the known input for each gas specie and given in the JANAF tables. With the values for each Q known, the terms required for the Gibbs free energy, enthalpy, entropy, and heat capacity can be evaluated using the basic relationship between the thermodynamic functions and the partition function. These are combined for the four different partition functions into the values for the internal partition function for each state, and then the values for all the states are combined into the total contribution from the internal partition function. All the diatomic species used for the CCl₂F₂ analysis were compared with the JANAF tables for temperatures up to 6,000 K, and, except for two species that will be discussed under the special cases section, all checked to within 0.1 percent. This included species that had multiple electronic states, multiple vibrational states, and one specie with multiple electronic and vibrational states. The calculations then were carried out to 30,000 K. The higher temperature results for the diatomic species are not as reliable as for the monatomic gases as there were generally no higher electronic states provided for input. This is somewhat offset by the expectation that, at the higher temperatures where these electronic states might become important, there will not be enough of the diatomic species present to make a significant contribution to the global gas thermochemical properties. #### 3.3 LINEAR POLYATOMIC GASES. The linear polyatomic gases are treated essentially the same as diatomic gases; however, with some adjustments. The corrections for anharmonic vibrations were ignored. The number of vibrational degrees of freedom (N_v) was adjusted for the number of atoms (N) in the molecule and the linear nature of the molecule $(N_v = 3N-5)$. The third change was made because the spectroscopic input data combined terms. Also, of the species under consideration, none had multiple states associated with any individual partition function. Therefore, the contributions for each partition function were split and calculated independently of the other partition functions, without having an effect upon the final thermochemical property values. Since multiple terms were not present, the contributions by the rotational partition function were calculated using the approximation given in the 1985 edition of the JANAF tables. $$B \equiv \frac{B_e - \alpha_e}{2}$$ $$\left(\frac{C_p^{o}(T)}{R_u}\right)_r = 1 + \frac{1}{45} \left(\frac{c_2 B}{T}\right)^2$$ $$\left(\frac{[H^{\circ}(T) - H^{\circ}(0K)]}{R_{u}T}\right)_{r} = 1 - \frac{1}{3} \left(\frac{c_{2}B}{T}\right) - \frac{1}{45} \left(\frac{c_{2}B}{T}\right)^{2}$$ $$\left(\frac{S^{o}(T)}{R_{u}}\right)_{r} = 1 - \ln\left(\frac{c_{2}B\sigma}{T}\right) - \frac{1}{90}\left(\frac{c_{2}B}{T}\right)$$ $$\left(\frac{-[G^{\circ}(T) - H^{\circ}(0K)]}{R_{u}T}\right)_{r} = -\ln\left(\frac{c_{2}B\sigma}{T}\right) + \frac{\frac{c_{2}B}{T}}{3} + \frac{\left(\frac{c_{2}B}{T}\right)^{2}}{90}$$ There were only six species that fell into this category. One of them, C₃, was calculated as a special case. The other five species all checked to within 0.1-percent accuracy when compared with the JANAF tables for 0 K through 6,000 K. As with the diatomic species, the farther beyond 6,000 K the calculations are carried, the less confidence in the thermodynamic properties. However, even to a greater extent than for the diatomics, at temperatures where properties are less certain, it is expected that there will not be enough of the polyatomics around to affect the global thermodynamic properties of the mixture, even if the values for the polyatomics are wildly off. #### 3.4 NONLINEAR POLYATOMIC GASES. The nonlinear polyatomic gases are treated the same as the linear polyatomic gases with two adjustments. The number of vibrational degrees of freedom (N_v) was adjusted in a slightly different manner for the number of atoms in the molecule (N) to reflect the nonlinear nature of the molecule $(N_v = 3N-6)$. The other change was made because the molecule now has a significant moment of inertia along all three axes. Again, of the species under consideration, none had multiple states associated with any individual partition function, so each partition function was split from and calculated independently of the other partition functions. With the nonlinear molecule, the contributions by the rotational partition function were calculated using the equations given in the 1985 edition of the JANAF tables. $$\left(\frac{C_p^{o}(T)}{R_u}\right)_r = \frac{3}{2}$$ $$\left(\frac{[H^{o}(T) - H^{o}(0K)]}{R_{u}T}\right) = \frac{3}{2}$$ $$\left(\frac{S^{o}(T)}{R_{u}}\right)_{r} = \frac{3}{2} + \frac{1}{2} \ln \left(\frac{\pi \sigma}{I_{A}I_{B}I_{C}}\right)$$ $$\left(\frac{-[G^{\circ}(T) - H^{\circ}(0K)]}{R_{u}T}\right)_{r} = \frac{1}{2} \ln \left(\frac{\pi\sigma}{I_{A}I_{B}I_{C}}\right)$$ I_A I_B I_C is the product of the principal moments of inertia of the molecule. Of the species that fell into this category, two were special cases. The other species all checked to within 0.1-percent accuracy when compared with the JANAF tables for 0 K through 6,000 K. As with the linear polyatomic species, the further beyond 6,000 K the calculations are carried, the less confidence in the thermodynamic properties. However, as stated for the linear polyatomics, at temperatures where properties are less certain, it is expected there will not be enough of the polyatomics around to affect the global thermodynamic properties of the mixture, even if the values for the polyatomics are wildly off. #### 3.5 SPECIAL CASES. There were six special cases among the species considered for the CCl_2F_2 mixture analysis. Five were alluded to in the above descriptions while the sixth is a condensed specie and cannot be evaluated using ideal gas methods. The six species are C(s), Cl_2 , F_2 , C_3 , C_2Cl_6 , and C_2F_6 . The Cl_2 and F_2 caused the most concern of all the species that required special treatment, since there was the greatest likelihood for significant amounts of these species to be present under high-temperature and high-pressure conditions. Large errors in the properties of these two species would have the greatest chance of causing noticeable errors in the calculated properties of the CCl_2F_2 mixtures. These six exceptions to the standard calculational methods employed will be discussed individually, with a description of exactly what was done to arrive at an adequate evaluation of the thermochemical properties. C(s): This is condensed carbon, otherwise known as graphite. It is a solid specie and cannot be evaluated using methods discussed for the various varieties of ideal gases. Values for the heat capacity beyond 6,000 K were not readily available. This most likely has to do with the C(s) melting point being somewhere around 4,300 K. Therefore, the heat capacity for temperatures above 6,000 K was assumed to be constant at the JANAF table value at 6,000 K. The other thermochemical properties then can be evaluated from the heat capacity and the other known values at 6,000 K. All the properties for C(s) at 6,000 K and below were set to be the same as in the 1985 JANAF tables. Above 6,000 K, the following equations were used. $$C_p^{o}(T) = C_p^{o}(6,000 \text{ K}) = 29.946$$ $$[H \circ (T) - H \circ (298.15 K)] = [H \circ (6,000 K) - H \circ (298.15 K)] + C_p^{\circ}(T) (T - 6,000)$$ $$\frac{-[G \circ (T) - H \circ (298.15 K)]}{T} = \frac{-[G \circ (6,000 K) - H \circ (298.15 K)]}{T} +$$ $$C_p(T) \left[\left(\frac{298.15}{T} - \frac{298.15}{6,000} \right) + \left(\ln T - \ln 6,000 \right) \right]$$ $$S^{o}(T) = \frac{[H^{o}(T) - H^{o}(298.15K)]}{T} + \frac{-[G^{o}(T) - H^{o}(298.15K)]}{T}$$ These equations match the JANAF table values at 6,000 K and provide a smooth transition to the extended values. Related to the properties of C(s), but associated with gaseous carbon in the JANAF tables, is the column for $\log K_p(T)$, which, for C, is the same as the vapor pressure $(P_c(T))$ of C(s). The vapor pressure can be determined by the following equation (Ref. 8). $$\ln P_{c}(T) = \frac{-E_{0}(C)}{R_{u}T} - \left(\frac{G^{o}(T) - H^{o}(0K)}{R_{u}T}\right)_{C} + \left(\frac{G^{o}(T) - H^{o}(0K)}{R_{u}T}\right)_{C(s)}$$ (Note that "log" is logarithm base 10 and "ln" is logarithm base e.) Using this equation in conjunction with the extended tables for C(s) and C, the vapor pressure for solid carbon can be determined. This is needed in the CCl₂F₂ analysis to determine the upper bound on the amount of carbon gas allowed in the system. Cl₂: The thermochemical property values derived for Cl₂ by the analysis did not match the JANAF tables. But it was different from the rest of the special cases in that a cause for the discrepancy was not determined. Also, the error was somewhat odd. While none of the properties match the JANAF values, extracting the value of the partition function, Q, from the tables produced the same value as the analysis was calculating. Somehow, the terms related to Q had a discrepancy which, while not off wildly, was noticeable. And yet another specie with similar levels of vibrational and electronic states matched the tables perfectly, indicating that the analysis code was functioning properly. It is possible that there is an error in the input data as published in the JANAF tables, but, if so, it has not yet been found. Therefore, the JANAF table results at 6,000 K and below were declared correct and
used. For temperatures above the JANAF tables, the results of the analytical calculation were used, but the values were adjusted with an offset so they matched the values in the JANAF tables at 6,000 K. F₂: The F₂ calculation for the 1985 JANAF tables was done in a very different manner than for the 1971 JANAF tables. Instead of using a single vibrational manifold and calculating the summation, each vibrational state was enumerated and spectroscopic constants provided. The details of this special evaluation were not obtained and the table could not be duplicated. It should be noted that the new table contained very different results from the previous table. Since the 1985 JANAF table was deemed correct, it was used for the values at and below 6,000 K. Above that temperature, the old values of input (from the 1971 JANAF tables) were used for the calculation, but were adjusted with an offset so that the values matched the 1985 tables at 6,000 K. C_3 : The discrepancy in the values for C_3 caused the least amount of concern, as this molecule is truly a special case. In an attempt to get the results to better match certain experiments, the evaluation of the vibrational states of C_3 was arbitrarily limited in the JANAF results. Historically, there has been much discussion of the correct properties for C_3 , mainly concerned with calculations in a pure carbon environment. Other equation values have been proposed that more accurately reflect experimental results in such environments (Refs. 9, 10). Of the various proposed solutions, the one by Strauss and Thiele (Ref. 9) has produced generally favorable comparisons with experiment. Other proposed solutions also closely approximate this solution. Therefore, their proposed thermochemical properties, instead of the JANAF properties, have been selected for use in this analysis. The equations were set up and the results agree with those published by Strauss and Thiele to within 0.01 percent for the temperature ranges in the reference. The equations used contributions from translational, bending-rotational, and vibrational sources. The translational terms are the same as for the monatomic species and the vibrational terms are the same for the diatomic species. The bending-rotational partition function is given by the following equations. $$U(\theta) = \frac{hc}{48 B_e} \left(\frac{v_0}{c} \right)^2 \theta^2 + \frac{h^2 c^2 \sigma}{576 B_e^2} \left(\frac{v_0}{c} \right)^4 \theta^4$$ $$Q_{br} = \frac{1}{48} \left(\frac{kT}{hcB_e} \right)^2 \int_0^{\pi} e \frac{U(\theta)}{kT} \sin\theta \, d\theta$$ Experimental measurements provide $v_0/c = 55.5511$ cm⁻¹ and hc $\sigma = 0.001062$ cm. θ is the variable of integration. The property terms for the bending-rotational terms are given by the equations for the relationships between the thermodynamic functions and the partition function. C_2Cl_6 : The input data for C_2Cl_6 indicate that the calculation includes additional terms for internal rotation. This is a special case that did not appear to warrant an attempt to evaluate it, since it is expected that very little of this large molecule will be present at temperatures of 6,000 K and above. The solution for this molecule was to use the JANAF tables for temperatures of 6,000 K and below. For temperatures above this, the calculation ignored the internal rotation, while adjusting the value of $I_AI_BI_C$ to provide the correct value at 298 K. The adjusted value was 1.125×10^{-108} , changed from the published value of 9.145×10^{-112} . The results were adjusted by an offset to match the JANAF values at 6,000 K. C_2F_6 : The input data for C_2F_6 indicate that the calculation includes additional terms for torsion. Like C_2Cl_6 , this is a special case that did not appear to warrant an attempt to evaluate it, since it is expected that very little of this large molecule will be present at temperatures of 6,000 K and above. The solution for this molecule was to use the JANAF tables for temperatures of 6,000 K and below. For temperatures above this, the calculation ignored the internal rotation, while adjusting the value of $I_AI_BI_C$ to provide the correct value of Q_p at 298 K. The adjusted value was 8.275×10^{-112} , changed from the published value of 6.005×10^{-113} . The results were adjusted by an offset to match the JANAF values at 6,000 K. #### 3.6 JANAF TABLE INPUT DATA ERRORS. During the course of calculating the results for the many species considered for analyzing the CCl_2F_2 mixtures, there were several species that did not match the results in the 1985 JANAF tables. Five of those species required the special treatment listed above. The rest of the discrepancies were resolved by making adjustments to the input data (there appeared to be definite difficulty with the correct value of σ , the symmetry number). As the results using the corrected input agree with the JANAF tables, those corrections have been declared correct. The corrections are listed below. F₂ - under vibration level 7 (v=7), the value of B_v is listed as 0.7484, but is really 0.7844. (Note that this correction was not actually used, as the calculation was done as a special case instead.) CF_2^+ - σ is not listed. The correct value is 2. CF_3^+ - σ is listed as 1, but the correct value is 6. CCl_4 - σ is listed as 2, but the correct value is 12. #### 3.7 EXTREMELY HIGH TEMPERATURES. While the original intent was to extend the JANAF tables to around 12,000 K, they were eventually extended to 30,000 K so that mixture properties could be obtained at these high temperatures. It then was found that it would be useful to have the mixture properties for temperatures beyond 30,000 K, all the way to tens of electron volts (eV). As 20 eV corresponds to about 230,000 K, this was very much beyond the current temperature level of the JANAF tables. It was decided to attempt calculation of the equation-of-state at the higher temperatures by running the JANAF tables to these extremely high temperatures. As the multiatomic molecules would be well beyond a reasonable temperature, only monatomics were used for this very much elevated temperature region. Some interaction between the equation-of-state calculations and the JANAF table calculations did occur. The pressures in the equation-of-state calculations ranged from 0.1 bar through 100,000 bar. The highest temperature to be used in the mixture calculation was 500,000 K, corresponding to 43.1 eV. The first results showed that the mixture consisted of electrons and the fourth ionization levels of all three atoms (Cl⁺⁺⁺⁺, F⁺⁺⁺⁺, and C⁺⁺⁺⁺). This indicated that not enough ionization levels were being considered. Therefore, tables were created for the following additional species: | Cl ⁺⁵ | Cl ⁺⁸ | Cl ⁺¹⁰ | F ⁺⁶ | C+5 | |------------------|------------------|-------------------|-----------------|-----| | Cl ⁺⁶ | Cl ⁺⁹ | F ⁺⁵ | F ⁺⁷ | C+6 | | Cl ⁺⁷ | | | | | Carbon only went through six ionization levels as there are only six electrons on the carbon atom. While fluorine has nine electrons, the atomic energy levels available (without doing additional research) only were through the seventh ionization level. Data available for chlorine was through the tenth ionization level. Using the energy level data for the additional 11 species and the same method used for the second through fourth ionization levels, the equivalent JANAF tables were created for the additional ionization levels. The tables are, of course, at best only as accurate as the energy level data. While these data are, in general, experimentally determined, some values are estimated. While such estimates do not have much influence at lower temperatures, for these extremely high temperatures it is possible that there is some significant error introduced. # SECTION 4 EQUATION-OF-STATE CALCULATIONS The calculations performed to determine the properties of the gas mixture (Ref. 11) of decomposed CCl₂F₂ have two major assumptions. First, as previously stated, this is an equilibrium calculation. The assumption is that it took an infinite amount of time to reach this state. The reality is that it most likely took significantly less time to reach a condition that is very close to this equilibrium state. In fact, to be applied to the hydrodynamic calculation as anticipated, that near equilibrium condition may have to be reached within microseconds. The other assumption is that this is an ideal gas. That is, there are no real gas effects present. The enthalpy, entropy, and free energy are a function of temperature only and *not* a function of pressure. This assumption most certainly is false over some range of the temperatures and pressures being calculated, specifically at low temperature and high pressure. At 400 K and 100,000 bar, pressure has a significant effect on the gas mixture and properties. An estimate at the point at which real gas effects become significant will be made. If a noticeable portion of the hydrodynamic code calculations use results within the area of real gas effects, the analysis should be reevaluated. Along with the real gas effects, condensed species, with the exception of solid carbon, have been ignored. Thus, at 400 K and 100,000 bar, most likely there would be a pool of liquid. That possibility is not recognized in these calculations. It also should be noted that this effort was started as an independent check on the equilibrium results that already had been calculated. As such, it was decided to perform the calculations using a different code and a different method from those used in the previous calculations. This code (EQUIL) was written specifically for this analysis. #### 4.1 MIXTURE SPECIES. For the equilibrium mixture calculation, all the species that are to be part of the composition must be determined prior to the calculation since the component species properties are required to calculate
the composition. If a specie is not really present, then it will be calculated as being a very small part of the mixture. The preliminary calculations of the mixture composition performed by SAIC using the CET89 code considered 35 possible species, of which 10 were ions. There were 41 possible species with properties in the JANAF tables. All 41 species were considered in the EQUIL calculations and are listed below. | CCl ₂ F ₂ | C | CIF | $C_2Cl_4^{\dagger}$ | CF ₂ ⁺ | |---------------------------------|------------------|-------------------------------|---------------------|------------------------------| | CF ₄ | C(s) | ClF ₃ | $C_2Cl_6^{\dagger}$ | CF ₃ ⁺ | | CCl ₄ | CCl | CIF ₅ [†] | C_2F_2 | Cl | | CCIF ₃ [†] | CCl ₂ | C_2 | C_2F_4 | Cl^+ | | CCl ₃ F | CCl ₃ | C ₃ | $C_2F_6^{\dagger}$ | F | | Cl_2 | CF | C ₄ | e ⁻ | $F^{+\dagger}$ | | Cl | CF ₂ | C ₅ | C_2 | C- | | F_2 | CF ₃ | C_2Cl_2 | CF⁺ | C^+ | | F | | | | | [†] = not considered in CET89 calculations In addition, after several calculations were done at higher temperatures and lower pressures, there was a significant amount of singly ionized atoms present. This implied that additional ionization levels should be considered. Consequently, the following nine species were added to the list of mixture species considered, after first creating equivalent JANAF tables for them. $$Cl^{++}$$ Cl^{+++} F^{+++} C^{++} C^{+++} ### 4.2 JANAF TABLES ABOVE 6,000°K. The JANAF Thermochemical Tables contain the species property data for the range from 0 K through 6,000 K. The mixture properties are required at higher temperatures. Though the originally estimated limit was 10,000 K to 12,000 K, it eventually was decided that temperatures as high as 30,000 K might be needed. Therefore, an effort was made to extend the JANAF tables to the higher temperature limit. The tables were duplicated and then extended to 30,000 K (Section 3). There were a few species that required special handling, but overall the process was straightforward, if a bit time consuming. While this extension is somewhat uncertain for the polyatomic species with no information about electronic levels, it was anticipated that there would not be very many of the polyatomic molecules present. The most prevalent specie class, the monatomics, can be calculated to a relatively high accuracy as long as the atomic energy levels for the specie are known, as they are for the atoms involved in the CCl_2F_2 mixture. All 50 species being considered in the CCl_2F_2 mixture now have properties data from 0 K through 30,000 K in 100 K increments. #### 4.3 REACTIONS AND EQUILIBRIUM CONSTANTS. The reactions considered in this analysis are of the form $$a_1 A_1 + a_2 A_2 + a_3 A_3 \rightleftharpoons b_1 B_1 + b_2 B_2 + b_3 B_3$$ where A_i = the reactant molecule B_i = the product molecule a_i = number of reactant molecules b_i = number of product molecules There can be, at most, three different reactant species and three different product species. The equilibrium constant for a given reaction can be calculated from knowing the Gibbs free energy and the heat of formation of the species involved in the reaction (Ref. 8). The equilibrium constant for this reaction is defined in terms of the partial pressures where P_i denotes the partial pressure of specie i. $$K_{p} = \frac{P_{B_{1}}^{b_{1}} P_{B_{2}}^{b_{2}} P_{B_{3}}^{b_{3}}}{P_{A_{1}}^{a_{1}} P_{A_{2}}^{a_{2}} P_{A_{3}}^{a_{3}}}$$ The equilibrium constant, K_p , may be computed from the partition function of each specie participating in the reaction, Q, and the heat of formation at 0 K (E_0). $$\Delta E_0 = b_1 E_0(B_1) + b_2 E_0(B_2) + b_3 E_0(B_3) - a_1 E_0(A_1) - a_2 E_0(A_2) - a_3 E_0(A_3)$$ $$\ln K_{p} = \frac{-\Delta E_{0}}{R_{u}T} + b_{1} \ln Q (B_{1}) + b_{2} \ln Q (B_{2}) + b_{3} \ln Q (B_{3})$$ $$- a_{1} \ln Q (A_{1}) - a_{2} \ln Q (A_{2}) - a_{3} \ln Q (A_{3})$$ The heat of formation is given in the JANAF tables and the free-energy function may be calculated from the Gibbs free energy in the same tables. $$Q = e^{\ln Q} = e^{\frac{-[G \circ (T) - H \circ (0K)]}{R_u T}}$$ In this equation-of-state analysis, the species' partial pressures were not the natural variable to use in solving for the species. A more appropriate variable is the specie mole fraction. The partial pressure, P_i , is related to the mole fraction, x_i , and the total system pressure, P_i , by $$P_i = P \times x_i$$ The equilibrium constant can then written as $$K_{p} = \frac{x_{B_{1}}^{b_{1}} x_{B_{2}}^{b_{2}} x_{B_{3}}^{b_{3}}}{x_{A_{1}}^{a_{1}} x_{A_{2}}^{a_{2}} x_{A_{3}}^{a_{3}}} P^{b_{1}+b_{2}+b_{3}-a_{1}-a_{2}-a_{3}}$$ As an example, consider the following reaction. $$2 \text{ CCl}_2\text{F}_2 \rightleftarrows \text{ CCl}_4 + \text{CF}_4$$ The equilibrium constant then provides the relationship between the species' partial pressures. $$K_{p} = \frac{P_{CCl_4} P_{CF_4}}{P_{CCl_4F_2}^2}$$ Writing this in terms of the mole fractions gives $$K_{p} = \frac{X_{CCl_{4}} X_{CF_{4}}}{X_{CCl_{2}F_{2}}^{2}}$$ For the example equilibrium condition, K_p is only a function of the species involved and the temperature. The system pressure has cancelled out of this particular reaction and is not a factor. If these three species are the only species present in the system, the mole fractions are readily determined. Some sample results are shown below. | K_p | CCl_2F_2 | CCl ₄ | CF ₄ | |-------|------------|------------------|-----------------| | | | | | | 0.10 | 0.612 | 0.194 | 0.194 | | 0.25 | 0.500 | 0.250 | 0.250 | | 1.0 | 0.333 | 0.333 | 0.333 | | 4.0 | 0.200 | 0.400 | 0.400 | | 10. | 0.136 | 0.432 | 0.432 | #### 4.4 CONDENSED SPECIES. There is only one condensed specie allowed in this analysis, solid carbon, denoted by C(s). Actually, if any other condensed specie were present under the analysis conditions, the analysis would be in error. This most certainly will occur at the very low temperature and very high pressure conditions. When solid carbon is present, the amount of gaseous carbon present is set by the vapor pressure of the solid carbon. The vapor pressure of C above C(s) as determined by the third law of thermodynamics is $$\ln (P_{v})_{C} = \frac{-E_{0}(C)}{R_{u}T} - \left(\frac{G^{\circ} - H_{0}^{\circ}}{R_{u}T}\right)_{C} + \left(\frac{G^{\circ} - H_{0}^{\circ}}{R_{u}T}\right)_{C(s)}$$ where the heat of formation of C(s) has been defined as 0.0 (Ref. 11). This relationship between C and C(s) is available directly from the JANAF tables. The last column under C is labeled "Log K_f " and is the logarithm base 10 of the vapor pressure of C. Note that this simple relationship does *not* hold between this column and the larger carbon molecules such as C_2 and C_3 . However, because this is an equilibrium analysis, the values calculated for C_2 and C_3 will be the vapor pressure of those molecules. Condensed species have no gas pressure and so must not be counted when calculating mole fractions in the reaction pressure equations. #### 4.5 MIXTURE COMPOSITION. To determine the composition of the mixture, a series of equations must be written, one for each specie that is being considered. Most of these equations will be reaction equations, which eventually will relate equilibrium constants to species mole fractions. Another advantage of performing an equilibrium analysis is that it does not matter if the reaction equations are the ones that actually occur. The equilibrium assumption means that however roundabout an equation is written, the solution will be the same. All that is necessary is to make sure there are no redundant equations present; there must not be more than one way to get to a product. For example, a CF_2 equation can be written as $$CF_2 \rightleftarrows C + F_2$$ or it can be written as $$CF_2 \rightleftarrows C + 2F$$ But *both* forms cannot be present. (The above reactions assume that both F and F_2 are present in the system.) Refer to Appendix B for the nominal set of reaction equations used to solve for the Freon mixture. In addition to the reaction equations, the other equations needed are the summation of the atoms Cl, F, and C. When ions are present, there also is the summation of electric charge. Using the previous example with CCl_2F_2 , CCl_4 , and CF_4 as the only three species present, when the mole fractions were determined for various values of K_p , the following two equations were implied; $$2 = 2 x_{CCl_2F_2} + 4 x_{CCl_4}$$ $$2 = 2 x_{CCl_2F_2} + 4 x_{CF_4}$$ However, the carbon summation equation, $$1 = x_{CCl_2F_2} + x_{CCl_4} + x_{CF_4}$$ does not provide any new information as long as all the possible species each contain exactly one carbon atom. It also should be noted that since the number of moles present is not constant, the number on the left side of the summation equations needs to be multiplied by the ratio of the original number of moles over the current number of moles. Since mass is conserved, this also is the ratio of the mixture molecular weight and the CCl₂F₂ molecular weight. For the simple case above, this ratio was 1. When the reaction set is complete, there will be one equation for each specie. For the species under analysis, that means that there are 50 simultaneous equations to be solved. But 46 of those equations are nonlinear, making finding a solution a nontrivial effort. Three main methods have been used in this analysis. All involve iteration to a solution and require a "reasonable" guess as to the correct solution before the iterations will converge. The first technique is to linearize the reaction rate equations. A standard solver then can be used to solve the 50 linear equations. The linear solution is fed back into the nonlinear equations and the next guess at the solution is made. If the original guess was close enough, the iteration will converge to the answer. If not, the process will fail. An additional difficulty with the linearized method
is that as some species are present only in very small mole fractions, the linear matrix can readily become singular, or nearly so. To remove the singularity, the reaction and the specie must be removed and all species strictly dependent upon the removed specie also must be removed. But if the reaction set was written such that a specie with a very small presence connects a specie with a large presence into the system, the reaction set must be rewritten instead. With so many species present and the mole fractions of the species varying significantly over the solution range, this was a daunting task. This solution technique is no longer being used. The second method is to solve the nonlinear equation set. This appears to work better, even if sometimes only minimally. Once the reaction equations have been written, the next step is to assign each reaction to a specie for solution. Of course, the specie must be involved in the reaction assigned to it for solution. It should be noted that the summation equations should be used to solve for a specie with a large mole fraction or numerical difficulties can arise. Starting from the initial solution guess, each equation is solved by iteration. If the initial guess was close enough, the solution will generally converge. The solution at the previous condition is used as the guess for the solution at a nearby pressure and temperature. However, as the relative amount of the various species changes, the equations that should be assigned to each specie change. Sometimes determining the correct assignment is straightforward, but other times it requires some trial and error to determine the proper reaction assignments. In spite of the difficulties, this technique appears faster than using the linearized method. But there still were computational regions where both methods became excruciatingly slow to converge. Finally, a third solution method was formulated. This technique separates the linear from the nonlinear equations. The nonlinear equations then are reformulated with a change of variable to produce another set of linear equations. These two sets of linear equations have a nonlinear relationship between them. First one set of equations is solved. The results are fed into the second set and then those equations are solved. Since the assignment of the species to one set or another essentially is arbitrary, the linear independence of the equations in each set is no longer automatic. Several checks must be made during the assignment to ensure that both sets of equations will have a solution. Also, reactions 1 through 26 in Appendix B were changed so that all species were in equilibrium with their constituent atoms. This method solves at about the same speed as the other methods when their convergence is fast. However, when convergence slows down, this method only takes two to five times longer instead of orders of magnitude longer for the other two techniques. In fact, this method was so fast that all cases were rerun according to it and the answers agreed with previously obtained answers. Under some conditions, the number of species has been reduced from the 50 listed above. Below 6,000 K, the nine multiply ionized species are not present in significant quantities and are removed from the reaction set, allowing for a faster iteration to solution. And below 3,200 K, there are no ionized species present in perceptible amounts, so the 20 ionized species are not used. For uniformity of printout, any specie not present is assigned a mole fraction of 1.0×10^{-150} . #### 4.6 MIXTURE PROPERTIES. Once the mole fractions of the species have been determined, it is easy to calculate the mixture properties needed. The molecular weight is simply the summation of the species molecular weights multiplied by their mole fraction: $$\mathbf{M} = \sum_{i=1}^{n} f_{i} \mathbf{M}_{i}$$ And knowing the molecular weight, pressure, and temperature, the density of an ideal gas is easily found from the perfect gas law: $$P = \rho RT$$ The internal energy of a mixture is determined by summing over the mole fraction energies of the individual species: $$E = \sum_{i=1}^{n} x_i E_i$$ The heat capacity at constant pressure and the heat capacity at constant volume also can be calculated in a similar manner. The ratio of these specific heats, γ , then can be obtained. The enthalpy, if needed, is also calculated this way. ## 4.7 ELEVATED TEMPERATURES. It was suggested subsequently that it would be useful to have the mixture properties for temperatures beyond 30,000 K, all the way to tens of electron volts (eV). As 20 eV corresponds to about 230,000 K, this was very much beyond the current temperature level of the equation-of-state analysis. As the multiatomic molecules would be well beyond a reasonable temperature limit for their existence, only the monatomics were used for this very much elevated temperature region. For this elevated temperature regime, the highest temperature to be used in the mixture calculation was 500,000 K, corresponding to 43.1 eV. The first results showed that the mixture consisted of electrons and the fourth ionization levels of all three atoms (Cl^{++++} , F^{++++} , and C^{+++++}). This indicated that not enough ionization levels were being considered. Therefore, tables were created for the following additional species: | Cl ⁺⁵ | Cl ⁺⁸ | Cl ⁺¹⁰ | F ⁺⁶ | C+5 | |------------------|------------------|-------------------|-----------------|-----| | Cl ⁺⁶ | Cl ⁺⁹ | F ⁺⁵ | F ⁺⁷ | C+6 | | Cl ⁺⁷ | | | | | Carbon only went through six ionization levels as there are only six electrons on the carbon atom. While fluorine has nine electrons, the atomic energy levels available (without doing additional research) were only through the seventh ionization level. Data was available for chlorine through the tenth ionization level. The results of the equation-of-state calculations for temperatures higher than 30,000°K should be used with caution. In examining the mole fractions, two things became apparent. At 500,000 K and low pressures, most of the chlorine was Cl⁺¹⁰, most of the fluorine was F⁺⁷, and most of the carbon was C⁺⁶, all of which are the highest ionization levels considered. The carbon is no problem as there are no additional ionization levels for it. However, this indicates that for a proper answer under these conditions, even higher ionization levels of chlorine and fluorine must be used. At the high-pressure conditions at 500,000 K, the most prominent species were Cl⁺⁸, F⁺⁷, and C⁺⁺⁺⁺. Here, while the chlorine and carbon are acceptable, it still appears that additional ionization levels of fluorine are required. As these extreme temperatures were not vital, the effort was not expended to obtain the energy level data required for additional ionization levels of fluoride. At the low temperature end of the elevated temperatures, 30,000 K, the results were compared with those obtained using the 50 species given earlier. At 0.1 bar, even though the elevated temperature calculation used only monatomic species, the error in density was 0.025 percent and the error in internal energy was 0.061 percent, both quite satisfactory. However, at 100,000 bar, the solutions diverged quite significantly. The error in density was 38.1 percent and for the internal energy, it was 5.93 percent. So at pressures above about 1,000 bar at 30,000 K with the elevated temperature species, the error in the mixture properties begins to become significant. It is unclear just where the curve of significant error should be drawn, but it would appear that at 50,000 K and 100,000 bar there would, in the real world, probably be a noticeable amount of diatomic molecules present, which were not allowed in the evaluation. ## 4.8 REAL GAS EFFECTS. The ideal gas approximation has been used in Section 4.6 to calculate the thermodynamic mixture properties of Freon over a wide range of temperature and pressure. At sufficiently high pressure, real gas effects become important and will influence both the mixture composition and the mixture thermodynamic properties. The corresponding states method (see, for example, Chapter 4 of Ref. 13) is easily applied to a mixture of given composition to determine the influence of pressure upon the mixture properties. However, calculating the mixture composition when the Gibbs free energy of each component is pressure-dependent is a tedious procedure and is beyond the scope of this effort. Instead, we shall provide an estimate of the pressure and temperature regime in which the ideal gas assumption is accurate and define a pressure boundary above which the ideal gas assumption becomes questionable. The most convenient indicator of real gas behavior is the deviation of the compressibility factor $Z[Z = P/(\rho RT)]$ from a value of unity. We shall arbitrarily set the boundary between ideal gas and real gas behavior at Z = 1.10. That is, we set the boundary where the compressibility factor has increased by 10 percent from the perfect gas value of unity. This boundary between the real and ideal gas regime is shown in terms of the reduced pressure and temperature in Figure 4-1. The corresponding states table of compressibility from Breedveld (Table 1A-3 of Ref. 11) was used with a constant value of Z = 1.10 to generate Figure 4-1. To determine the boundary between real and ideal gas behavior in terms of the physical coordinates (i.e., P and T), we use the pseudocritical method (Chapter 4 of Ref. 14) to define the critical point properties for the mixture. These values are given by: $$T_{cm} = \frac{\sum_{i} x_i T_{c_i}}{1 - x_c^*}$$ $$P_{cm} = \frac{(1 - x_c^* T_{cm})}{\sum_i x_i T_{c_i} / P_{c_i}}$$ where T_{cm} and P_{cm} are the pseudocritical mixture values for temperature and pressure. The mole fraction for each i component of the mixture is x_i and x_c^* is the mole fraction of the condensed carbon. T_{ci} and P_{ci} are the critical point temperature and
pressure of each component. The reduced temperature and pressure are defined by: $$T_R \equiv \frac{T}{T_{cm}}$$ and $P_R \equiv \frac{P}{P_{cm}}$ Using the ideal gas calculation to define the mixture composition and the above equations for the pseudocritical values, T_{cm} and P_{cm} , and for the reduced coordinates, T_R and P_R , Figure 4-1 may be replotted in terms of the physical coordinates in Figure 4-2. The tables of Reference 12 only extend out to a reduced temperature of fifty. Extrapolating the curve of Figure 4-1 to larger values of T_R gives the dashed line of Figure 4-2. Therefore, in the pressure and temperature regime that lies below the curve of Figure 4-2, the ideal gas assumption should be valid and the present results may be used with confidence. However, at pressures that lie above the curve, real gas effects will limit the accuracy and caution is advised. Boundary between real gas and perfect gas regimes in terms of reduced coordinates for Z = 1.10. Figure 4-1. Figure 4-2. Equillibrium CCl₂F₂ real gas regions. ## 4.9 SOLUTION SPACE. When it was determined that a grid of mixture properties as a function of pressure and temperature would be needed, a set of points was chosen. The pressure would range from 0.1 bar through 100,000 bar with 6 approximately equally-ratioed values within each decade (1.0000, 1.5157, 2.2894, 3.4641, 5.0000, 7.0000) for a total of 37 pressures. The following temperatures selected: Every 400 K between 400 and 10,000 K Every 1,000 K between 11,000 and 20,000 K 25,000 K 30,000 K 100,000 K 200,000 K This made for a total of 1,517 data points. 500,000 K During the evaluation of some of the shock tube experiment results, the data in the above grid were included in the analysis. When a simple bilinear interpolation was used on that data, the results showed significant distortion of certain values, most notably density, in the spaces between the grid points. (See Figure 4-3.) This was additional impetus to complete a table with finer grid points than those above. While resolving certain numerical difficulties with the computer code, the finer grid table was completed. It covers the same pressure range, but has 18 values per decade (1.0000, 1.1487, 1.3195, 1.5157, 1.7411, 2.0000, 2.2894, 2.6207, 3.0000, 3.4641, 4.0000, 4.4721, 5.0000, 5.4772, 6.0000, 7.0000, 8.0000, 9.0000) for a total of 109 pressures. The following temperatures were used: Every 100 K between 200 and 10,000 K Every 200 K between 10,200 and 15,000 K Every 500 K between 15,500 and 20,000 K Every 1,000 K between 21,000 and 30,000 K Figure 4-3. Shock tube calculations. Every 2,000 K between 32,000 and 50,000 K Every 5,000 K between 55,000 and 100,000 K Every 10,000 K between 110,000 and 200,000 K Every 20,000 K between 220,000 and 500,000 K Thus, there were 20,601 data points in this finer grid. Both tables were sent to Dr. James R. Barthel at the S-Cubed Division of Maxwell Laboratories, Inc. on PC-formatted floppy disks. ## **SECTION 5** #### REFERENCES - 1. Su, Fred, Private Communication, Science Application International Corporation, 10260 Campus Pt Dr., San Diego, CA 92121, May 1992. - 2. JANAF Thermochemical Tables, 3rd Ed., National Bureau of Standards, Washington, D.C., 1985. - 3. JANAF Thermochemical Tables, NSRDS-NBS-37, 2nd Ed., National Bureau of Standards, Washington, D.C., June 1971. - 4. Logicon RDA Internal Memo, "Extending the JANAF Thermochemical Tables" to Gary Ganong from Alan Lampson, 16 November 1992. - 5. Logicon RDA Internal Memo, "CCl₂F₂ Equation-of-State Calculations" to Gary Ganong from Alan Lampson, 21 June 1993. - 6. Gurvich, L.V., Veyts, I.V., and Alcock, C.B., *Thermodynamic Properties of Individual Substances*, 4th Ed., Vol. 1, Hemisphere Publishing Corp., New York, NY, 1987. - 7. Atomic Energy Levels, Vol. 1, NBS-C-467, National Bureau of Standards, Washington, D.C., June 1949. - 8. Crowell, P.G., Analytic Solutions for Carbon Sublimation in Atmospheres of Elemental Carbon, Hydrogen, Nitrogen, and Oxygen, SAMSO-TR-78-13, December 1977. - 9. Strauss, H.L. and Thiele, E., "Thermodynamics of C₃. II. General Methods for Non-Rigid Molecules at High Temperature", *Journal of Chemical Physics*, Vol. 46, No. 7, April 1, 1967. - 10. Hansen, C.F. and Pearson, W.E., "A Quantum Model for Bending Vibrations and Thermodynamic Properties of C₃", Canadian Journal of Physics, Vol. 51, 1973. - 11. Allison, D.O., Calculation of Thermodynamic Properties of Arbitrary Gas Mixtures with Modified Vibrational-Rotational Corrections, NASA-TN-D-3538, National Aeronautics and Space Administration, Washington, D.C., August 1966. - 12. Breedveld, G.J.F., Thermodynamic Properties of Supercritical Fluids and Their Mixtures at Very High Pressures, PhD Dissertation, Chemical Engineering, University of California, Berkeley, December 16, 1972. - 13. Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd Edition, J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Prentice Hall 1986. 14. The Properties of Gases and Liquids, 4th Edition, Reid, R.C., Prausnitz, J.M., and Poling, B.E., McGraw Hill 1987. ## APPENDIX A # TABLES FOR MONATOMIC, DIATOMIC, LINEAR POLYATOMIC, AND NONLINEAR POLYATOMIC SPECIES The following four tables (Tables A-1 to A-4) show sample comparisons between the JANAF tables and the calculated values. There is one representative molecule from each of the four categories of molecules. While the range from 0 K through 6,000 K is complete, only the major temperature increments from 6,000 K through 30,000 K are shown. The JANAF tables are from Reference 1. Table A-1. JANAF Table for Monatomic Specie: Cl. a. Chlorine (Cl) $cl_1(g)$ | • | · · · · · | | - | 98.15 K Standard State Pressure = p* = 0.1 MPa | | | | | | |--------------------------------|------------------|--------------------|----------------------|--|--------------------|----------------------|--------------------|--|--| | | | | | | | | | | | | T/K | C _p | s° - | T\(\tau)*H = °D} | н"- H°(Т _г) | Δ _f H° | ΔſĠ° | Log K | | | | 0 | 0. | 0. | INFINITE | -6.272 | 119.621 | 119.621 | INFINITE | | | | 100 | 20.788 | 142.175 | 184.104 | -4.193 | 120.244 | 115.476 | -60.319 | | | | 200
250 | 21.079
21.450 | 156.636
161.378 | 167.161
165.547 | -2.105
-1.042 | 120.813
121.066 | 110.482 | -28.855
-22.538 | | | | 98.15 | 21.430 | 165.189 | 165.547 | | | 107.869 | | | | | 300 | 21.852 | 165.325 | | 0. | 121.302 | 105.306 | -18.449 | | | | 350
350 | 21.852 | 168.720 | 165.190
165.457 | 0.040
1.142 | 121.311
121.553 | 105.207
102.504 | -18.318
-15.298 | | | | 400 | 22.467 | 171.703 | 166.055 | 2.259 | 121.795 | 99.766 | -13.028 | | | | 450 | 22.644 | 174.361 | 166.833 | 3.387 | 122.035 | 96.998 | -11.259 | | | | 500 | 22.744 | 176.752 | 167.708 | 4.522 | 122.272 | 94.203 | -9.841 | | | | 600 | 22.781 | 180.905 | 169.571 | 6.800 | 122.734 | 88.546 | -7.709 | | | | 700
800 | 22.692
22.549 | 184.411
187.432 | 171.448
173.261 | 9.074 | 123.172 | 82.813
77.019 | -6 .180 | | | | 900 | 22.389 | 190.079 | 174.986 | 11.337
13.584 | 123.585
123.972 | 77.019
71.174 | -5.029
-4.131 | | | | 1000 | 22.233 | 192.430 | 176.615 | 15.815 | 124.334 | 65.288 | -3.410 | | | | 1100 | 22.089 | 194.542 | 178.150 | 18.031 | 124.675 | 59.367 | -2.819 | | | | 1200 | 21.959 | 196.458 | 179.597 | 20.233 | 124.997 | 53.416 | -2.325 | | | | 1300 | 21.843 | 198.211 | 180.963 | 22.423 | 125.300 | 47.438 | -1.906 | | | | 1400
1500 | 21.742
21.652 | 199.826
201.323 | 182.253
183.475 | 24.602
26.772 | 125.589 | 41.438 | -1.546 | | | | | | | | 26.772 | 125.863 | 35.417 | -1.233 | | | | 1600
1700 | 21.573
21.504 | 202.718
204.024 | 184.635
185.737 | 28.933
31.087 | 126.124
126.374 | 29.379
23.325 | -0.959
-0.717 | | | | 1800 | 21.443 | 205.251 | 186.788 | 33.234 | 126.574 | 23.325
17.256 | -0.717
-0.501 | | | | 1960 | 21.389 | 206.409 | 187.790 | 35.375 | 126.840 | 11.175 | -0.307 | | | | 2000 | 21.341 | 207.505 | 188.749 | 37.512 | 127.058 | 5.081 | -0.133 | | | | 2100 | 21.298 | 208.545 | 189.667 | 39.644 | 127.265 | -1.023 | 0.025 | | | | 2200 | 21.260 | 209.535 | 190.548 | 41.772 | 127.463 | -7.136 | 0.169 | | | | 2300
2400 | 21.226
21.195 | 210.479
211.382 | 191.394
192.208 | 43.896
46.017 | 127.650 | -13.259
-10.389 | 0.301 | | | | 2500 | 21.167 | 212.246 | 192.992 | 46.017
48.135 | 127.827
127.992 | -19.389
-25.526 | 0.422
0.533 | | | | 2600 | 21.142 | 213.076 | 193.749 | 50.250 | 128.147 | -31.670 | 0.636 | | | | 2700 | 21.119 | 213.874 | 194.480 | 52.364 | 128.290 | -37.820 | 0.732 | | | | 2800 | 21.099 | 214.641 | 195.186 | 54.474 | 128.421 | -43.974 | 0.820 | | | | 2900
3000 | 21.080
21.063 | 215.381
216.096 | 195.870
196.532 | 56.583
58.690 | 128.541
128.649 | -50.133
-56.297 | 0.903 | | | | 3100 | 21.047 | | | | | -56.297 | 0.980 | | | | 3100
320 0 | 21.047 | 216.786
217.454 | 197.174
197.798 | 60.79 6
62.9 00 | 128.746
128.832 | -62.463
-68.633 | 1.052
1.120 | | | | 3300 | 21.019 | 218.101 | 198.403 | 65.002 | 128.908 | -74.804 | 1.184 | | | | 3400 | 21.007 | 218.728 | 198. 9 92 | 67.104 | 128.974 | -80.979 | 1.244 | | | | 3500 | 20.99 5 | 219.337 | 199.564 | 69.204 | 129.031 | -87.155 | 1.301 | | | | 3600 | 20.985 | 219.928 | 200.122 | 71.303 | 129.081 | -93.332 | 1.354 | | | | 3700
3800 | 20.975
20.966 | 220.503
221.062 | 200.665
201.195 | 73.401
75.498 | 129.124
129.161 | -99.511
-105.691 | 1.405 | | | | 3900 | 20.958 | 221.607 | 201.711 | 77.594 | 129.101 | -111.871 | 1.453
1.498 | | | | 1000 | 20.950 | 222.137 | 202.215 | 79.690 | 129.226 | -118.053 | 1.542 | | | | 100 | 20.943 | 222.655 | 202.707 | 81.784 | 129.255 | -124.235 | 1.583 | | | | 1200 | 20.936 | 223.159 | 203.188 | 83.878 | 129.284 | -130.418 | 1.622 | | | | 1300 | 20.929 |
223.652 | 203.658 | 85.971 | 129.314 | -136.602 | 1.659 | | | | 1400
1500 | 20.923
20.918 | 224.133
224.603 | 204.118
204.568 | 88.064
90.156 | 129.347
129.384 | -142.786
-148.972 | 1.695 | | | | 1600 | 20.912 | | 205.009 | | | | 1.729 | | | | 1700 | 20.912 | 225.063
225.512 | 205.009
205.440 | 92.247
94.338 | 129.426
129.474 | -155.158
-161.345 | 1.762
1.793 | | | | 800 | 20.903 | 225.952 | 205.863 | 96.429 | 129.530 | -167.533 | 1.823 | | | | 900 | 20.898 | 226.383 | 206.278 | 98.519 | 129.594 | -173.723 | 1.852 | | | | 6000 | 20.894 | 226.806 | 206.684 | 100.609 | 129.667 | -179.914 | 1.880 | | | | 100 | 20.890 | 227.219 | 207.082 | 102.698 | 129.750 | -186.106 | 1.906 | | | | 5 20 0
5 3 00 | 20.886
20.883 | 227.625
228.023 | 207.474
207.858 | 104.787 | 129.844 | -192.300 | 1.932 | | | | 40 0 | 20.883 | 228.413 | 207.858
208.235 | 106.875
108.963 | 129.950
130.068 | -198.496
-204.694 | 1.956
1.980 | | | | 500 | 20.876 | 228.796 | 208.605 | 111.051 | 130.000 | -210.895 | 2.003 | | | | 600 | 20.873 | 229.172 | 208.969 | 113.138 | 130.343 | -217.098 | 2.025 | | | | 700 | 20.870 | 229.542 | 209.327 | 115.226 | 130.501 | -223.304 | 2.046 | | | | 800 | 20.867 | 229.905 | 209.678 | 117.312 | 130.673 | -229.512 | 2.067 | | | | 5900
3000 | 20.865 | 230.261 | 210.024 | 119.399 | 130.859 | -235.724 | 2.087 | | | | ,,,,,,, | 20.862 | 230.612 | 210.364 | 121.485 | 131.059 | -241.939 | 2.106 | Table A-1. Calculation for Monatomic Specie: Cl (Continued). | Cl | b. MON | ATOMIC (| GAS | | | | | | | |----------------------|----------------------------|-------------------------------|--|-------------------------------|---|----------------------------|-------------------------------|-------------------------------|--| | T(K) | Ср | \$0 | -(GO-HO298)/T | HO-HO298 | T(K) | Ср | S0 | -(GO-H0298)/T | HO-H0298 | | 0
100
200 | .000
20.788
21.081 | .000
142.174
156.636 | 1.0e99
184.107
167.163 | -6.272
-4.193
-2.105 | 10600
10800
11000 | 21.225
21.305
21.396 | 242.506
242.904
243.296 | 221.970
222.354
222.731 | 217.682
221.935
226.205 | | 300 | 21.856 | 165.326 | 165.191 | .040
2.260
4.523 | 11200 | 21.501 | 243.682 | 223.102 | 230.494 | | 400
500 | 22.470
22.745 | 171.705
176.755 | 166.056
167.709 | 4.523 | 11400
11600 | 21.620
21.754 | 244.064
244.441 | 223.467
223.825 | 234.806
239.143 | | 600
700 | 22.781
22.691 | 180.907
184.413 | 169.573
171.449 | 6.801
9.075
11.337 | 11600
11800
12000
12000 | 21.904
22.072 | 244.814
245.183 | 224.177
224.525 | 243.508
247.906 | | 800
900 | 22.547
22.387 | 187.434
190.081 | 173.263
174.988 | 11.337
13.584 | 12200 | 22.259
22.466 | 245.550 | 224.866 | 252.339
256.811 | | 1000 | 22.231 | 192.431
194.543 | 176.617 | 15.815
18.030 | 12400
12600 | 22.694 | 245.913
246.275 | 225.203
225.534 | 252.339
256.811
261.327
265.890 | | 1100
1200
1300 | 22.087
21.957 | 194.343
196.459
198.212 | 178.152
179.599
180.964 | 20.232
22.422 | 12800
13000
13200 | 22.945
23.219
23.517 | 246.634
246.992 | 225.861
226.184 | 270.506 | | 1300
1400 | 21.841
21.740 | 199.827 | 180.964
182.255
183.477 | 22.422
24.601
26.770 | 13200
13400 | 23.841 | 247.348
247.704 | 226.502
226.815 | 275.179
279.915 | | 1500
1600 | 21.650 | 201.324
202.718 | 184.636 | 78 OT1 | 13400
13600
13800
14000
14200 | 24.191
24.568 | 248.060
248.416 | 227.125 | 284.717
289.593 | | 1700
1800 | 21.572
21.502
21.441 | 204.024
205.251 | 185.739
186.789 | 31.085
33.232
35.374 | 14000 | 24.972 | 248.772 | 227.431
227.733 | 294.546
299.584 | | 1900 | 21.387 | 206,409 | 187.791 | 35.374 | 14400 | 25.406
25.868 | 249.130
249.488 | 228.032
228.328 | 304.710 | | 2000
2100 | 21.339
21.297 | 207.505
208.545 | 188.750
189.668 | 37.510
39.642 | 14600
14800 | 26.360
26.882 | 249.848
250.211 | 228.620
228.909 | 309.933
315.257 | | 2200
2300 | 21.297
21.259
21.225 | 209.535
210.479 | 190.549 | 41.769
43.894 | 15000 | 27.434
28.017 | 250.211
250.575 | 229.196 | 320.688
326.232 | | 2400 | 21.194 | 211.382 | 190.549
191.395
192.209
192.993 | 46.014 | 15400 | 28,629 | 250.942
251.312 | 229.480
229.761 | 331.896 | | 2500
2600 | 21.166
21.141 | 212.246
213.076 | 143.750 | 48.132
50.248 | 15600
15800 | 29.271
29.943 | 251.686
252.063 | 230.039
230.316 | 337.686
343.607 | | 2700
2800 | 21.119 | 213.873
214.641 | 194.480
195.187 | 52.361
54.472 | 14600
14800
15000
15200
15400
15600
15800
16000
16200 | 30.645
31.374 | 252.444 | 230.590
230.862 | 349.665
355.867 | | 2900 | 21.098
21.079 | 215.381
216.095 | 195.871
196.533
197.175 | 56.580
58.687 | 16400 | 32.132 | 252.829
253.219 | 231.132 | 362.217
368.721 | | 3000
3100 | 21.062
21.046 | 216.786 | 197.175 | 60.793 | 16400
16600
16800 | 32.916
33.727 | 253.613
254.012 | 231.401
231.668 | 375.385 | | 3200
3300 | 21.032
21.018 | 217.454
218.101 | 197.798
198.404 | 62.897
64.999 | 17000
17200 | 34.562
35.420
36.300 | 254.416
254.825 | 231.933
232.197 | 375.385
382.214
389.211 | | 3400
3500 | 21.006
20.995 | 218.728
219.337 | 198.992
199.565 | 67.100
69.200 | 17400
17600 | 36.300
37.201 | 255.240
255.660 | 232.459
232.721 | 396.383
403.733 | | 3600
3700 | 20.984 | 219.928 | 200.123 | 71.299 | 17800 | 38.110 | 256.085 | 232.981 | 411.264 | | 3800 | 20.975
20.966 | 220.503
221.062 | 200.666
201.195
201.711 | 73.397
75.494 | 18000
18200 | 39.055
40.005 | 256.517
256.953 | 233.240
233.498 | 418.982
426.887 | | 3900
4000 | 20.957
20.949 | 221.606
222.137 | 201.711
202.216 | 77.591
79.686 | 18400 | 40.967 | 257.396
257.844 | 233.755
234.012 | 434.984
443.275 | | 4100
4200 | 20.942
20.935 | 222.654
223.159 | 202.216
202.708
203.189 | 81.780
83.874 | 18600
18800
19000 | 41.940
42.921 | 258.298
258.757 | 234.268
234.523 | 443.275
451.761 | | 4300
4400 | 20.929 | 223.651 | 203.659 | 85.968 | 19200 | 43.908
44.899 | 259.222 | 234.778 | 460.444
469.325 | | 4500 | 20.92 3
20.917 | 224.132
224.603 | 204.119
204.569 | 88.060
90.152 | 19400
19600 | 45.890
46.880 | 259.692
260.168 | 235.032
235.287 | 478.404
487.681 | | 4600
4700 | 20.912
20.907 | 225.062
225.512 | 205.009
205.441 | 92.244
94.334 | 19800
20000 | 47.866
48.845 | 260.168
260.649
261.135 | 235.540
235.794 | 497.155
506.826 | | 4800
4900 | 20.902
20.898 | 225.952
226.383 | 205.863
206.278 | 96.425
98.515 | 20200 | 49.816 | 261.626 | 236.047 | 516.693 | | 5000 | 20.894 | 226.805 | 206.684 | 100.605 | 20400
20600
20800 | 50.776
51.721 | 262.122
262.622 | 236.300
236.553 | 526.752
537.002 | | 5100
5200 | 20.890
20.886 | 227.219
227.624 | 207.083
207.474 | 102.694
104.782 | 20800
21000 | 52.651
53.562 | 263.126
263.634 | 236.807
237.060 | 547.440
558.061 | | 5200
5300
5400 | 20.882
20.879 | 228.022
228.413
228.796 | 207.858
208.235 | 106.871
108.959 | 21000
21200
21400 | 54.453
55.321 | 263.634
264.146
264.661 | 237.313 | 568.863
579.841 | | 5500 | 20.876 | 228.796 | 208.605 | 111.047 | 21600 | 56.165 | 265.180 | 237.566
237.819 | 590.990 | | 5600
5700 | 20.873
20.870
20.867 | 229.172
229.541
229.904 | 208.969
209.327 | 113.134
115.221
117.308 | 21800
22000 | 56.982
57.770 | 265.701
266.225 | 238.073
238.326 | 602.305
613.781 | | 5800
5900 | 20.867
20.865 | 229.904
230.261 | 209.679
210.024 | 117.308
119.395 | 22200
22400 | 58.529
59.256 | 266.752
267.280 | 238.580
238.834 | 625.411
637.190 | | 6000
6200 | 20.862
20.858 | 230.611
231.295 | 210.365
211.029 | 121.481
125.653 | 22600
22800 | 59.9 50 | 267.810 | 239.088 | 649.112
661.168 | | 6400 | 20.854 | 231.958 | 211.673 | 129.824 | 23000 | 60.610
61.235
61.823 | 268.341
268.873 | 239.342
239.597 | 673.353 | | 6600
6800 | 20.851
20.848 | 231.958
232.599
233.222 | 212.297
212.903 | 133.995
138.165 | 23200
23400 | 61.823
62.375 | 269.406
269.939 | 239.851
240.106 | 685.660
698.080 | | 7000
7200 | 20.846
20.844 | 233.826
234.413 | 213.493
214.066 | 142.334
146.503 | 23600
23800 | 62.375
62.888
63.364 | 270.472
271.004 | 240.361
240.616 | 710.607
723.233 | | 7400
7600 | 20.844 | 234.984 | 214.623 | 150.672
154.841 | 24000 | 63.801 | 271.536 | 240.872 | 735.950 | | 7800 | 20.844
20.845 | 235.540
236.082 | 215.166
215.696 | 159.009 | 24200
24400 | 64.199
64.558 | 272.068
272.598
273.126 | 241.128
241.383 | 748.751
761.627 | | 8000
8200 | 20.848
20.853 | 236.609
237.124 | 216.212
216.716 | 163.179
167.349 | 24600
24800 | 64.878
65.160 | 273.126
273.652 | 241.639
241.895 | 774.571
787.575 | | 8400
8600 | 20.859
20.869 | 237.627
238.118 | 217.208
217.688 | 171.520
175.693 | 25000
25500 | 65.403
65.847 | 274.177 | 242.151
242.792 | 800.632
833.455 | | 8800 | 20.881 | 238.598 | 218.158 | 179.868 | 26000 | 66.063 | 275.477
276.758 | 243.433 | 866.441 | | 9000
9200 | 20.896
20.915 | 239.067
239.527 | 218.618
219.067 | 184.045
188.226 | 26500
27000 |
66.065
65.868 | 278.016
279.250 | 244.074
244.714 | 899.482
932.473 | | 9400
9600 | 20.939
20.969 | 239.977
240.418 | 219.507
219.938 | 192.412
196.602 | 27500
28000 | 65.489
64.948 | 280.455
281.631 | 245.353
245.990 | 965.320
997.935 | | 9800
10000 | 21.004
21.047 | 240.850
241.275 | 220.361
220.775 | 200.800
205.005 | 28500
29000 | 64.263
63.455 | 282.774
283.885 | 246.625
247.258 | 1030.244
1062.178 | | 10200 | 21.097 | 241.692 | 221.181 | 209.219 | 29500 | 62.542 | 284 .962 | 247.888 | 1093.681 | | 10400 | 21.156 | 242.103 | 221.579 | 213.444 | 30000 | 61.542 | 286.005 | 248.515 | 1124.705 | Table A-2. JANAF Table for Diatomic Specie: CF. a. Fluoromethylidyne (CF) $C_1F_1(g)$ | Enthalp: | Reference | Temperature | = T _F = 298.15 K | 8 | tandard State | Pressure = p° | = 0.1 MPa | |----------------------|------------------|--------------------|-----------------------------|------------------------|--------------------|--------------------------------|--------------------| | | | — J K-1mol | -1 | | kJ mol-1- | | | | T/K | C; | s° - | [G°-H°(T _r)]/T | H°-H°(T _r) | °H ₁ A | $\Delta_{\mathbf{f}}G^{\circ}$ | Log K | | 0 | 0. | 0. | INFINITE | -9.082 | 251.605 | 251.605 | INFINITE | | 100 | 31.017 | 180.140 | 239.625 | -5.948 | 253.226 | 243.826 | -127.361 | | 200 | 29.778 | 201.126 | 215.766 | -2.928 | 254.455 | 233.912 | -61.092 | | 250 | 29.792 | 207.766 | 213.526 | -1.440 | 254.896 | 228.723 | -47.789 | | 98.15 | 30.060 | 213.033 | 213.033 | ο. | 255.224 | 223.650 | -39.183 | | 300
350 | 30.074
30.537 | 213.219
217.888 | 213.034
213.402 | 0.056
1.570 | 255.235
255.484 | 223.455
218.137 | -38.907
-32.555 | | 400 | 31.094 | 222.002 | 213.402 | 3.111 | 255.658 | 212.789 | -27.787 | | 450 | 31.681 | 225.698 | 215.297 | 4.680 | 255.765 | 207.423 | -24.077 | | 500 | 32.253 | 229.066 | 216.508 | 6.279 | 255.816 | 202.049 | -21.108 | | 600 | 33.280 | 235.040 | 219.111 | 9.557 | 255.779 | 191.296 | -16.654 | | 700 | 34.116 | 240.235 | 221.766 | 12.928 | 255.602 | 180.561 | -13.474 | | 800 | 34.780 | 244.836 | 224.368 | 16.374 | 255.322 | 169.859 | -11.091 | | 900
1 00 0 | 35.305
35.725 | 248.964
252.706 | 226.875
229.274 | 19.880
23.432 | 254.966
254.550 | 159.197
148.577 | -9.240
-7.761 | | | 36.064 | | | | | | | | 1100
1200 | 36.343 | 256.127
259.278 | 231.562
233.742 | 27.022
30.643 | 254.086
253.583 | 138.002
127.471 | -6.553
-5.549 | | 1300 | 36.576 | 262.196 | 235.820 | 34.289 | 253.046 | 116.983 | -4.700 | | 1400 | 36.773 | 264.914 | 237.802 | 37.957 | 252.479 | 106.538 | -3.975 | | 1500 | 36.942 | 267.457 | 239.695 | 41.643 | 251.885 | 96.134 | -3.348 | | 1600 | 37.088 | 269.846 | 241.506 | 45.344 | 251.267 | 85.771 | -2.800 | | 1700
1800 | 37.218
37.333 | 272.098
274.229 | 243.240
244.903 | 49.060
52.787 | 250.628
249.969 | 75.447
65.161 | -2.318
-1.891 | | 1900 | 37.436 | 276.250 | 246.500 | 56.526 | 249.292 | 54.913 | -1.510 | | 2000 | 37.530 | 278.173 | 248.036 | 60.274 | 248.601 | 44.700 | -1.167 | | 2100 | 37.617 | 280.006 | 249.515 | 64.032 | 247.896 | 34.522 | -0.859 | | 2200 | 37.697 | 281.758 | 250.941 | 67.797 | 247.180 | 24.378 | -0.579 | | 2300 | 37.771 | 283.435 | 252.318 | 71.571 | 246.456 | 14.267 | -0.324 | | 2400
2500 | 37.841
37.907 | 285.044
286.591 | 253.648
254.935 | 75.352
79.139 | 245.725
244.990 | 4.187
-5.861 | -0.091
0.122 | | | | | | | | | | | 2600
2700 | 37.970
38.030 | 288.079
289.513 | 256.181
257.389 | 82.933
86.733 | 244.253
243.516 | -15.881
-25.872 | 0.319
0.501 | | 2800 | 38.089 | 290.897 | 258.561 | 90.539 | 242.780 | -35.836 | 0.669 | | 2900 | 38.145 | 292.234 | 259.700 | 94.351 | 242.047 | -45.774 | 0.824 | | 3000 | 38.200 | 293.528 | 260.806 | 98.168 | 241.319 | -55.686 | 0.970 | | 3100 | 38.254 | 294.782 | 261.882 | 101.991 | 240.597 | -65.574 | 1.105 | | 3200
3300 | 38.307
38.360 | 295.997
297.177 | 262.929
263.949 | 105.819
109.652 | 239.882
239.175 | -75.439
-85.282 | 1.231
1.350 | | 3400 | 38.413 | 298.323 | 264.943 | 113.491 | 238.477 | -95.104 | 1.461 | | 3500 | 38.466 | 299.437 | 265.913 | 117.335 | 237.789 | -104.905 | 1.566 | | 3600 | 38.519 | 300.521 | 266.859 | 121.184 | 237.110 | -114.686 | 1.664 | | 3700 | 38.572 | 301.578 | 267.783 | 125.038 | 236.442 | -124.449 | 1.757 | | 3800
3900 | 38.627
38.682 | 302.607
303.611 | 268.686
269.569 | 128.898
132.764 | 235.785 | -134.195 | 1.845 | | 4000 | 38.738 | 304.591 | 270.432 | 136.635 | 235.139
234.505 | -143.922
-153.634 | 1.928
2.006 | | 4100 | 38.796 | 305.548 | 271.277 | 140.511 | 233.882 | -163.330 | 2.081 | | 4200 | 38.855 | 306.484 | 272.104 | 144.394 | 233.882 | -173.010 | 2.152 | | 4300 | 38.915 | 307.399 | 272.915 | 148.282 | 232.670 | -182.676 | 2.219 | | 4400 | 38.977 | 308.294 | 273.709 | 152.177 | 232.081 | -192.329 | 2.283 | | 4500 | 39.040 | 309.171 | 274.487 | 156.078 | 231.504 | -201.968 | 2.344 | | 4600
4700 | 39.105
39.172 | 310.030 | 275.250
275.999 | 159.985 | 230.938 | -211.594 | 2.403 | | 4800 | 39.172 | 310.871
311.697 | 275.999
276.734 | 163.899
167.820 | 230.383
229.839 | -221.209
-230.811 | 2.458
2.512 | | 4900 | 39.311 | 312.507 | 277.456 | 171.747 | 229.306 | -240.403 | 2.563 | | 5000 | 39.383 | 313.301 | 278.165 | 175.682 | 228.784 | -249.983 | 2.612 | | 5100 | 39.457 | 314.082 | 278.862 | 179.624 | 228.272 | -259.553 | 2.658 | | 5200 | 39.532 | 314.849 | 279.546 | 183.573 | 227.771 | -269.114 | 2.703 | | 5300
5400 | 39.610
39.689 | 315.603
316.344 | 280.220
280.882 | 187.530
191.495 | 227.279
226.798 | -278.664
-288.206 | 2.746 | | 5500 | 39.769 | 317.073 | 281.533 | 191.495 | 226.798 | -288.206
-297.739 | 2.788
2.828 | | 56 00 | 39.851 | 317.790 | 282.174 | 199.449 | 225.865 | -307.263 | 2.866 | | 5700 | 39.935 | 318.496 | 282.805 | 203.438 | 225.413 | -316.779 | 2.866 | | 5800 | 40.021 | 319.192 | 283.427 | 207.436 | 224.970 | -326.288 | 2.939 | | 5900 | 40.107 | 319.876 | 284.039 | 211.443 | 224.536 | -335.788 | 2.973 | | 600 0 | 40.196 | 320.551 | 284.642 | 215.458 | 224.111 | -345.282 | 3.006 | Table A-2. Calculation for Diatomic Specie: CF (Continued). | T(C) | CF | ь. DIA | TOMIC G | AS | | | | | | | |--|--------------|------------------|--------------------|--------------------|--------------------|----------------|------------------|--------------------|--------------------|----------------------| | 100 31.077 180.140 297.625 -1.948 10000 4.1.869 345.422 306.563 419.676 1000 31.320 29.778 201.125 215.765 -2.728 11000 4.5.865 347.862 308.673 445.646 300 310.678 215.216 215.216 21.516
21.516 21.5 | T(K) | Ср | \$ 0 - | (GO-HO298)/T | HO-H0298 | T(K) | Ср | \$0 | -(GO-HO298)/T | HO-H0296 | | 200 19.778 201.125 215.765 -2.928 11000 45.5044 346.247 307.277 424.644 340.211 31.004 | | | | | -9.088
-5.048 | 10600 | 44.690 | 344.585 | 305.838
306.563 | | | 300 30.074 213.210 31.030 31.030 32.000 31.030 31.0 | 100
200 | 29.778 | 201.125 | 215.765 | -2.928 | 11000 | 45.044 | 346.247 | 307.277 | 428.668 | | 500 12,233 220,665 21,6507 4,277 11600 45,550 344,653 300,355 455,847 17,770 34,150 24 | 300 | 30.074 | 213.219 | 213.033 | .056
3.111 | 11200
11400 | 45.216
45.385 | 347.060
347.862 | 307.980
308.673 | | | 700 34.116 240.234 221.765 12.785 12.785 12.786 46.045 350.202 310.691 44.131 460.245 600 350.202 310.691 44.131 460.245 600 351.002 341.004 46.045 351.002 311.000 315.005 315.005 311.005 31 | | 31.094 | 229.065 | 216.507 | 6.279 | 11600 | 45.550 | 348.653 | 309.355 | 455.847 | | 600 34.780 224.635 224.567 19.890 120.00 44.025 330.992 331.392 341.300 48.311 19.00 35.765 242.645 224.657 225.677 23.762 120.00 44.025 330.192 331.325 341.300 48.311 19.00 35.764 224.677 231.561 27.022 120.00 44.027 333.182 331.297 311.00 19.00 35.764 224.077 235.761 30.043 15000 44.658 333.192
331.297 311.00 19.00 36.576 224.977 235.761 30.043 15000 44.658 333.192 331.297 311.00 19.00 36.576 224.919 227.00 37.761 11.00 44.767 334.046 314.486 326.377 11.00 36.576 224.919 227.00 37.761 11.00 44.767 335.073 316.277 225.761 11.00 36.576 224.919 227.00 37.761 11.00 36.576 226.919 227.00 37.761 11.00 36.576 226.919 227.00 37.761 11.00 36.576 226.919 227.00 37.761 11.00 37.761 | 600 | 33.280 | 235.039 | 219.111 | 9.557
12.928 | 11800
12000 | 45.711
45.860 | 349.433
350 202 | | 464.973
474.131 | | 1000 35.725 227.057 227.072 31.741 31.000 44.227 35.5.120 315.627 311.701 1100 34.5.54 25.777 231.741 31.74 | | 34.110
34.780 | 244.835 | 224.367 | 16.374 | 12200 | 46.024 | 350.962 | 311.345 | 483.321 | | 1100 36.064 256.127 231.561 27.022 12900 46.608 333.903 313.975 531.670 131000 36.343 292.277 233.761 30.442 13000 46.608 333.903 313.975 253.971 3113000 36.576 262.1761 30.442 13000 46.608 333.903 313.975 253.971 3113000 36.576 262.1761 247.609 37.008 3 | 900 | 35.305 | 248.963 | 226.874 | 19.880
23.432 | 12400 | 46.175
44.323 | 351.711
352.451 | 311.990
312.627 | 492.541
501.791 | | 1200 34.343 259.477 231.741 34.640 37.7697 1300 44.687 355.203 315.691 359.075 1300 44.687 355.203 315.691 359.075 1300 35.642 267.456 259.695 41.643 13600 47.099 356.016 315.691 359.075 1400 37.888 269.865 241.505 45.344 13800 47.137 356.703 314.277 557.441 1400 37.288 269.865 241.505 45.344 13800 47.137 356.703 314.277 557.441 1400 37.288 269.865 241.505 45.344 13800 47.137 356.703 314.277 557.441 1400 37.288 269.865 241.505 45.344 13800 47.137 356.703 314.277 557.441 1400 37.288 269.865 241.288 241.289 14000 47.280 357.605 316.277 557.441 1400 47.280 357.605 316.277 557.441 1400 47.280 357.605 316.277 557.441 1400 47.280 357.605 316.277 557.441 1400 47.280 357.605 316.277 557.441 1400 47.280 357.605 316.277 557.441 1400 47.280 357.605 316.277 557.441 1400 47.280 357.605 316.277 557.441 1400 47.280 357.605 316.277 557.451 1400 37.287 1400 37.28 | | 36.064 | 256.127 | 231.561 | 27.022 | 12800 | 46.467 | 353.182 | 313.255 | 511.070 | | 1400 36, 773 264, 913 227, 801 13, 13, 13, 13, 13, 13, 13, 13, 13, 13 | 1200 | 36.343 | 259.277 | 233.741 | 30.643
34.289 | 13000
13200 | 46.608
46.745 | 353.903
354.616 | ጓ 1ሬ ሬጽራ | 520.377
529.713 | | 1600 37,088 269,865 241,505 453,44 13800 47,120 335,120 316,269 227,176 1800 37,218 272,208 242,400 34,240
34,240 | | 36.773 | 264.913 | 237,801 | 37.957 | 13400 | 46.879 | 355.320 | 315.091 | 539.075 | | 1900 37, 436 276, 250 246, 699 35, 124 14400 47, 673 355, 173 310, 1000 350, 712 12100 37, 510 277, 172 283, 1054 46, 223 4400 47, 673 355, 173 310, 1000 350, 174 1210 1210 121 1210 121 121 121 121 121 | 1500 | 36.942 | 267.456
260.845 | 239.695
241.505 | 41.643
45.344 | 13600
13800 | 47.137 | 356.703 | 316.277 | 557.879 | | 1900 37, 436 276, 250 246, 699 35, 124 14400 47, 673 355, 173 310, 1000 350, 712 12100 37, 510 277, 172 283, 1054 46, 223 4400 47, 673 355, 173 310, 1000 350, 174 1210 1210 121 1210 121 121 121 121 121 | 1600
1700 | 37.218 | 272,098 | 243.239 | 49.060 | 14000 | 47.260 | 357.382 | 316.859 | 567.318 | | 2000 37, 530 278, 172 248, 035 60, 274 146,00 47, 613 389, 373 318, 566 390, 274 2200 37, 647 281, 757 281, 757 280, 040 47, 613 389, 373 318, 566 390, 274 2200 37, 647 281, 757 281, 757 280, 040 47, 813 381, 627 281, 641, 641, 641, 641, 641, 641, 641, 64 | 1800 | 37.333
37.434 | 274.228
276.250 | 244.902
246.499 | | 14400 | 47.499 | 358.717 | 318,003 | 586.271 | | 2000 37,841 285,044 253,647 75,352 15400 48,041 361,922 264,781 265,094 27,797 288,078 255,193 77,907 288,078 255,193 78,000 38,000 37,970 288,078 255,188 25,333 15800 48,533 353,155 321,233 663,303 2500 37,970 288,078 255,188 25,333 15800 48,533 353,155 321,233 662,301 2800 38,000 275,528 262,081 259,699 94,551 16400 48,451 363,467 322,846 672,637 3100 38,000 275,528 262,085 96,168 16600 48,515 364,962 2823,356 1662,043 3100 38,254 294,781 261,881 101,991 16800 48,688 366,133 322,351 162,000 38,300 297,176 263,948 100,951 17000 48,771 366,709 324,856 711,578 3300 38,360 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 102,652 17200 48,852 367,280 325,346 171,578 3300 38,465 297,436 265,912 117,138 170,000 49,000 4 | 2000 | 37.530 | 278.172 | 248.035 | 60.274 | 14600 | 47.613 | 359.373 | 318.566
710.121 | 595.782 | | 2000 37,841 285,044 253,647 75,352 15400 48,041 361,922 264,781 265,094 27,797 288,078 255,193 77,907 288,078 255,193 78,000 38,000 37,970 288,078 255,188 25,333 15800 48,533 353,155 321,233 663,303 2500 37,970 288,078 255,188 25,333 15800 48,533 353,155 321,233 662,301 2800 38,000 275,528 262,081 259,699 94,551 16400 48,451 363,467 322,846 672,637 3100 38,000 275,528 262,085 96,168 16600 48,515 364,962 2823,356 1662,043 3100 38,254 294,781 261,881 101,991 16800 48,688 366,133 322,351 162,000 38,300 297,176 263,948 100,951 17000 48,771 366,709 324,856 711,578 3300 38,360 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 100,652 17200 48,852 367,280 325,346 171,578 3300 38,460 297,176 263,948 102,652 17200 48,852 367,280 325,346 171,578 3300 38,465 297,436 265,912 117,138 170,000 49,000 4 | 2100 | 37.617
37.607 | | 249.514
250.940 | 67.797 | 14800
15000 | 47.833 | 360.662 | 319.671 | 614.872 | | 2500 37, 907 286, 590 254, 934 7P, 139 15600 48, 141 362, 545 321, 284 643, 265 260 37, 970 288, 078 256, 181 82, 933 15800 48, 239 363, 188 321, 1810 653, 303 2700 38, 030 280, 512 277, 389 86, 733 16000 48, 333 363, 766 322, 331 662, 687, 287 2900 38, 145 292, 234 259, 689 44, 381 16400 48, 131 364, 542 322, 384 662, 283 31000 38, 200 275, 528 240, 689 44, 381 16400 48, 151 364, 542 323, 384 662, 283 31000 38, 200 275, 528 240, 681 241, 682 340, 381 3100 38, 200 275, 528 244, 691 241, 682 340, 682 343, 381 340 381, 381, 381 340 38 | 2300 | 37.771 | 283.435 | 252.3 17 | 71.571 | 15200 | 47.939 | 361.297 | | | | 3000 38.200 293.528 201.805 701.772 3200 38.207 295.977 225.928 105.809 170.00 48.608 366.133 352.531 701.772 3200 38.307 295.977 225.928 105.809 170.00 48.771 366.709 324.856 711.518 3300 38.301 297.176 225.928 105.809 170.00 48.771 366.709 324.856 711.518 3300 38.302 297.176 225.928 105.809 170.00 48.771 366.709 324.856 711.518 3300 38.446 299.436 225.949 1115.418 174.00 48.901 364.866 325.331 731.058 3400 38.519 300.521 266.859 127.108 174.00 49.007 364.866 326.331 731.058 3400 38.572 301.577 256.7733 127.108 174.00 49.007 364.866 326.331 731.058 3400 38.572 302.666 226.968 122.088 120.00 49.254 369.509 327.759 760.641 3400 38.627 302.666 226.968 132.764 18000 49.255 370.590 328.189 780.144 4000 38.778 306.548 271.276 140.511 18800 49.205 371.590 328.189 780.144 4000 38.786 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.439 371.871 123 338.648 789.814 4600 38.797 308.293 277.914 148.282 19200 49.556 372.694 330.000 819.716 4600 39.9172 310.871 275.998 163.899 20000 49.795 375.297 330.433 829.634 4600 39.9172 310.871 275.998 163.899 20000 49.795 375.2717 330.882 839.544 4600 39.9172 310.871 275.998 163.899 20000 49.795 375.727 331.379 859.488 4800 39.945 311.696 276.734 167.820 20200 49.566 375.717 333.482 839.554 4800 39.945 311.696 276.734 167.820 20200 50.686 375.709 332.601 879.399 5500 39.552 311.696 277.555 171.747 204.00 49.908 375.709 332.601 879.399 5500 39.552 311.696 277.555 171.747 204.00 49.908 375.709 332.601 879.399 5500 39.552 311.898 278.898 278.898 279.544 5400
40.750 376.878 377.878 377.878 377.878 377.978 377.178 330.824 377.979 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377 | 2400
2500 | 37.841
37.907 | 286,590 | 254.934 | 79.139 | 15400
15600 | 48,141 | 362.545 | 321.284 | 643.665 | | 3000 38.200 293.528 201.805 701.772 3200 38.207 295.977 225.928 105.809 170.00 48.608 366.133 352.531 701.772 3200 38.307 295.977 225.928 105.809 170.00 48.771 366.709 324.856 711.518 3300 38.301 297.176 225.928 105.809 170.00 48.771 366.709 324.856 711.518 3300 38.302 297.176 225.928 105.809 170.00 48.771 366.709 324.856 711.518 3300 38.446 299.436 225.949 1115.418 174.00 48.901 364.866 325.331 731.058 3400 38.519 300.521 266.859 127.108 174.00 49.007 364.866 326.331 731.058 3400 38.572 301.577 256.7733 127.108 174.00 49.007 364.866 326.331 731.058 3400 38.572 302.666 226.968 122.088 120.00 49.254 369.509 327.759 760.641 3400 38.627 302.666 226.968 132.764 18000 49.255 370.590 328.189 780.144 4000 38.778 306.548 271.276 140.511 18800 49.205 371.590 328.189 780.144 4000 38.786 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.439 371.871 123 338.648 789.814 4600 38.797 308.293 277.914 148.282 19200 49.556 372.694 330.000 819.716 4600 39.9172 310.871 275.998 163.899 20000 49.795 375.297 330.433 829.634 4600 39.9172 310.871 275.998 163.899 20000 49.795 375.2717 330.882 839.544 4600 39.9172 310.871 275.998 163.899 20000 49.795 375.727 331.379 859.488 4800 39.945 311.696 276.734 167.820 20200 49.566 375.717 333.482 839.554 4800 39.945 311.696 276.734 167.820 20200 50.686 375.709 332.601 879.399 5500 39.552 311.696 277.555 171.747 204.00 49.908 375.709 332.601 879.399 5500 39.552 311.696 277.555 171.747 204.00 49.908 375.709 332.601 879.399 5500 39.552 311.898 278.898 278.898 279.544 5400 40.750 376.878 377.878 377.878 377.878 377.978 377.178 330.824 377.979 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377 | 2600 | 37.970 | 288.078 | 256.181 | 82.933
84.733 | 15800
14000 | 48.239 | 363.158 | 321.810
322.331 | | | 3000 38.200 293.528 201.805 701.772 3200 38.207 295.977 225.928 105.809 170.00 48.608 366.133 352.531 701.772 3200 38.307 295.977 225.928 105.809 170.00 48.771 366.709 324.856 711.518 3300 38.301 297.176 225.928 105.809 170.00 48.771 366.709 324.856 711.518 3300 38.302 297.176 225.928 105.809 170.00 48.771 366.709 324.856 711.518 3300 38.446 299.436 225.949 1115.418 174.00 48.901 364.866 325.331 731.058 3400 38.519 300.521 266.859 127.108 174.00 49.007 364.866 326.331 731.058 3400 38.572 301.577 256.7733 127.108 174.00 49.007 364.866 326.331 731.058 3400 38.572 302.666 226.968 122.088 120.00 49.254 369.509 327.759 760.641 3400 38.627 302.666 226.968 132.764 18000 49.255 370.590 328.189 780.144 4000 38.778 306.548 271.276 140.511 18800 49.205 371.590 328.189 780.144 4000 38.786 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.8075 306.548 271.276 140.511 18800 49.439 371.871 123 338.648 789.814 4600 38.797 308.293 277.914 148.282 19200 49.556 372.694 330.000 819.716 4600 39.9172 310.871 275.998 163.899 20000 49.795 375.297 330.433 829.634 4600 39.9172 310.871 275.998 163.899 20000 49.795 375.2717 330.882 839.544 4600 39.9172 310.871 275.998 163.899 20000 49.795 375.727 331.379 859.488 4800 39.945 311.696 276.734 167.820 20200 49.566 375.717 333.482 839.554 4800 39.945 311.696 276.734 167.820 20200 50.686 375.709 332.601 879.399 5500 39.552 311.696 277.555 171.747 204.00 49.908 375.709 332.601 879.399 5500 39.552 311.696 277.555 171.747 204.00 49.908 375.709 332.601 879.399 5500 39.552 311.898 278.898 278.898 279.544 5400 40.750 376.878 377.878 377.878 377.878 377.978 377.178 330.824 377.979 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.679 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377.078 377 | 2700
2800 | | 200.896 | 258.561 | 90.539 | 16200 | 48.426 | 364.367 | 322.846 | 672.637 | | 3100 38.254 294.781 261.881 101.991 16800 48.688 366.133 324.3561 701.772 3200 38.340 297.176 263.948 105.819 17000 48.771 363.6779 324.856 771.280 3300 38.340 297.176 263.948 107.652 17200 48.852 367.280 325.346 721.280 3300 38.436 299.346 255.912 117.335 17600 49.007 366.405 325.831 731.058 33500 38.446 299.346 255.912 117.335 17600 49.007 366.405 325.831 731.058 33500 38.646 299.346 255.912 117.335 17600 49.007 366.405 326.811 740.852 33500 38.519 300.521 266.859 121.164 17800 49.007 366.405 326.787 750.661 33700 38.572 301.577 267.783 125.038 18000 49.134 369.508 327.259 760.484 3800 38.627 302.606 288.686 132.764 18400 49.295 370.052 327.725 770.522 33900 38.682 303.610 269.568 132.764 18400 49.295 370.590 328.189 780.174 4000 38.783 304.590 270.432 134.6355 182.20 49.363 371.123 328.648 790.404 4100 38.796 305.548 271.276 140.511 18800 49.429 371.652 329.103 779.919 4200 38.855 306.483 277.104 144.394 19000 49.429 371.652 329.103 779.919 4200 38.897 308.293 277.104 144.394 19000 49.429 371.652 329.103 779.919 4400 38.977 308.293 277.104 145.282 19200 49.556 372.694 330.000 819.716 4400 39.915 307.398 277.704 152.177 19400 49.618 373.208 330.433 829.634 4500 39.040 309.170 274.486 156.078 19600 49.678 373.717 330.882 89.434 4500 39.040 309.170 274.486 156.078 19600 49.787 373.717 330.882 89.434 4600 39.105 311.871 275.998 163.899 20000 49.795 373.721 331.317 49.954 4800 39.311 311.696 277.455 171.747 20400 49.908 373.709 332.601 879.396 39.311 311.696 277.455 171.747 20400 49.908 373.709 332.601 879.396 39.003 39.331 313.301 278.861 179.624 20800 50.016 376.679 333.473 89.385 5000 39.687 314.888 277.546 185.573 21000 50.200 378.570 333.479 89.385 5000 39.693 317.707 281.532 275.488 22000 50.505 381.375 333.477 895.945 5000 39.687 314.888 277.546 185.573 21000 50.505 381.375 333.477 895.945 5000 40.107 319.876 282.475 49.888 283 280.000 50.016 376.679 333.477 99.917 5000 40.107 319.876 282.476 282.885 290.000 50.505 381.375 333.477 99.917 5000 40.107 319.876 282.476 282.885 290.000 50.505 381.375 333.477 99 | 2900 | 38.145 | 292.234 | 259.699 | | 16400 | 48.515 | 364.962
345.550 | 323.356
323.861 | 682.331
692.043 | | 3600 38.519 300.521 265.537 125.058 18000 47.054 367.508 327.259 7761.484 3700 38.572 301.577 267.783 125.058 18000 47.054 367.508 327.259 7761.484 3800 38.627 302.606 268.686 132.764 184.00 49.256 370.590 328.189 780.174 4000 38.623 303.610 269.568 132.764 184.00 49.255 370.590 328.189 780.174 4000 38.796 305.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.655 306.483 272.104 144.394 19000 49.493 371.652 329.103 799.919 4200 38.655 306.483 272.104 144.394 19000 49.493 371.652 329.103 799.919 4200 38.695 306.393 273.914 185.262 19200 49.556 372.694 330.000 819.716 4400 38.977 308.293 273.708 152.177 194.00 49.618 373.208 330.435 829.584 4500 39.040 309.170 274.486 156.078 199.000 49.678 373.208 330.435 829.584 4500 39.105 310.029 275.249 159.965 199.00 49.787 374.221 331.317 849.505 4700 39.172 310.871 275.998 163.899 20000 49.787 374.221 331.317 849.505 4700 39.172 310.871 312.506 277.455 171.747 204.00 49.08 375.208 333.043 849.554 4800 39.241 311.696 276.734 167.820 20200 49.652 375.217 332.177 869.423 4900 39.351 312.506 277.455 171.747 204.00 49.908 375.209 332.601 877.399 5000 39.383 313.301 278.164 175.682 20600 49.962 376.196 333.022 885.386 5100 39.657 314.081 278.861 179.624 20600 50.016 376.679 333.260 1877.399 5000 39.531 314.884 279.546 183.573 21000 50.088 377.158 333.833 909.392 530 39.610 315.602 280.219 187.530 21200 50.108 377.163 333.824 919.411 5400 39.689 316.343 280.881 191.495 21000 50.171 378.104 334.672 929.440 5500 39.689 316.343 280.881 191.495 21000 50.171 378.104 334.672 929.440 5500 39.581 317.789 282.174 199.449 21800 50.271 378.104 334.672 929.440 50.088 379.943 335.670 335.670 335.670 335.600 40.107 319.876 284.038 211.443 222.00 50.171 378.104 334.672 929.440 50.088 379.943 335.670 335.670 335.670 335.670 335.600 40.107 319.876 284.038 211.443 222.00 50.181 379.943 335.677 335.677 335.679 335.600 40.107 319.876 284.038 211.443 222.00 50.181 379.943 335.679 335.679 336.600 40.107 319.876 284.038 219.445 222.2800 50.550 381.753 383.693 335.279 929.479 929.400 50. | 3000
3100 | 38.200
38.254 | 293.326
294.781 | 261.881 | 101.991 | 16800 | 48.688 | 366.133 | 324.361 | 701.772 | | 3600 38.519 300.521 265.537 125.058 18000 47.054 367.508 327.259 7761.484 3700 38.572 301.577 267.783 125.058 18000 47.054 367.508 327.259 7761.484 3800 38.627 302.606 268.686 132.764 184.00 49.256 370.590 328.189 780.174 4000 38.623 303.610 269.568 132.764 184.00 49.255 370.590 328.189 780.174 4000 38.796 305.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.655 306.483 272.104 144.394 19000 49.493 371.652 329.103 799.919 4200 38.655 306.483 272.104 144.394 19000 49.493 371.652 329.103 799.919 4200 38.695 306.393 273.914 185.262 19200 49.556 372.694 330.000 819.716 4400 38.977 308.293 273.708 152.177 194.00 49.618 373.208 330.435 829.584 4500 39.040 309.170 274.486 156.078 199.000 49.678 373.208 330.435 829.584 4500 39.105 310.029 275.249 159.965 199.00 49.787 374.221 331.317 849.505 4700 39.172 310.871 275.998 163.899 20000 49.787 374.221 331.317 849.505 4700 39.172 310.871 312.506 277.455 171.747 204.00 49.08 375.208 333.043 849.554
4800 39.241 311.696 276.734 167.820 20200 49.652 375.217 332.177 869.423 4900 39.351 312.506 277.455 171.747 204.00 49.908 375.209 332.601 877.399 5000 39.383 313.301 278.164 175.682 20600 49.962 376.196 333.022 885.386 5100 39.657 314.081 278.861 179.624 20600 50.016 376.679 333.260 1877.399 5000 39.531 314.884 279.546 183.573 21000 50.088 377.158 333.833 909.392 530 39.610 315.602 280.219 187.530 21200 50.108 377.163 333.824 919.411 5400 39.689 316.343 280.881 191.495 21000 50.171 378.104 334.672 929.440 5500 39.689 316.343 280.881 191.495 21000 50.171 378.104 334.672 929.440 5500 39.581 317.789 282.174 199.449 21800 50.271 378.104 334.672 929.440 50.088 379.943 335.670 335.670 335.670 335.600 40.107 319.876 284.038 211.443 222.00 50.171 378.104 334.672 929.440 50.088 379.943 335.670 335.670 335.670 335.670 335.600 40.107 319.876 284.038 211.443 222.00 50.181 379.943 335.677 335.677 335.679 335.600 40.107 319.876 284.038 211.443 222.00 50.181 379.943 335.679 335.679 336.600 40.107 319.876 284.038 219.445 222.2800 50.550 381.753 383.693 335.279 929.479 929.400 50. | 3200 | 38.307 | 295.997 | | | 17000
17200 | | 366.709
367.280 | 324.856
325.346 | 711.518
721.280 | | 3600 38.519 300.521 265.537 125.058 18000 47.054 367.508 327.259 7761.484 3700 38.572 301.577 267.783 125.058 18000 47.054 367.508 327.259 7761.484 3800 38.627 302.606 268.686 132.764 184.00 49.256 370.590 328.189 780.174 4000 38.623 303.610 269.568 132.764 184.00 49.255 370.590 328.189 780.174 4000 38.796 305.548 271.276 140.511 18800 49.429 371.652 329.103 799.919 4200 38.655 306.483 272.104 144.394 19000 49.493 371.652 329.103 799.919 4200 38.655 306.483 272.104 144.394 19000 49.493 371.652 329.103 799.919 4200 38.695 306.393 273.914 185.262 19200 49.556 372.694 330.000 819.716 4400 38.977 308.293 273.708 152.177 194.00 49.618 373.208 330.435 829.584 4500 39.040 309.170 274.486 156.078 199.000 49.678 373.208 330.435 829.584 4500 39.105 310.029 275.249 159.965 199.00 49.787 374.221 331.317 849.505 4700 39.172 310.871 275.998 163.899 20000 49.787 374.221 331.317 849.505 4700 39.172 310.871 312.506 277.455 171.747 204.00 49.08 375.208 333.043 849.554 4800 39.241 311.696 276.734 167.820 20200 49.652 375.217 332.177 869.423 4900 39.351 312.506 277.455 171.747 204.00 49.908 375.209 332.601 877.399 5000 39.383 313.301 278.164 175.682 20600 49.962 376.196 333.022 885.386 5100 39.657 314.081 278.861 179.624 20600 50.016 376.679 333.260 1877.399 5000 39.531 314.884 279.546 183.573 21000 50.088 377.158 333.833 909.392 530 39.610 315.602 280.219 187.530 21200 50.108 377.163 333.824 919.411 5400 39.689 316.343 280.881 191.495 21000 50.171 378.104 334.672 929.440 5500 39.689 316.343 280.881 191.495 21000 50.171 378.104 334.672 929.440 5500 39.581 317.789 282.174 199.449 21800 50.271 378.104 334.672 929.440 50.088 379.943 335.670 335.670 335.670 335.600 40.107 319.876 284.038 211.443 222.00 50.171 378.104 334.672 929.440 50.088 379.943 335.670 335.670 335.670 335.670 335.600 40.107 319.876 284.038 211.443 222.00 50.181 379.943 335.677 335.677 335.679 335.600 40.107 319.876 284.038 211.443 222.00 50.181 379.943 335.679 335.679 336.600 40.107 319.876 284.038 219.445 222.2800 50.550 381.753 383.693 335.279 929.479 929.400 50. | 3300
3400 | 38.413 | 298.322 | 264.943 | 113.491 | 17400 | 48.930 | 367.846 | 325.831 | 731.058 | | 380.0 38.572 301.577 267.783 125.038 18000 49.154 369.508 327.259 700.483 380.038 38.627 302.606 268.686 128.896 182.00 49.255 370.550 328.189 780.174 4000 38.758 304.590 270.432 136.635 182.00 49.295 370.590 328.189 780.174 4000 38.758 304.590 270.432 136.635 182.00 49.295 370.590 328.189 780.174 4000 38.758 304.590 270.432 136.635 182.00 49.429 371.652 329.103 779.919 4100 38.758 306.483 272.104 144.394 19000 49.429 371.652 329.103 779.919 4200 38.555 306.483 272.104 144.394 19000 49.456 372.694 330.000 819.716 400.00 38.975 306.200 38.975 306.200 170.274.486 156.078 19000 49.556 372.694 330.000 819.716 4000 39.000 309.170 2275.249 159.965 19000 49.678 373.717 330.802 839.644 4000 39.105 310.029 275.249 159.965 19000 49.678 373.717 330.802 839.554 4000 39.105 310.029 275.249 159.965 19000 49.678 373.717 330.802 839.554 4000 39.211 311.696 276.734 167.820 20000 49.757 374.722 331.377 89.59458 4000 39.211 311.696 276.734 167.820 20000 49.757 374.722 331.377 89.403 4000 39.311 312.506 2777.455 171.747 20400 49.908 375.709 332.601 879.399 5000 39.333 313.301 278.164 179.624 20800 49.902 375.196 333.439 899.384 4900 39.457 314.881 278.564 1875.505 280.219 187.530 21200 50.068 375.196 333.439 899.384 5200 39.551 317.898 282.174 183.575 21000 50.068 377.697 333.439 899.384 5200 39.551 317.789 282.174 183.575 21000 50.068 377.697 333.439 899.384 5200 39.551 317.789 282.174 199.449 21800 50.270 379.033 334.662 979.735 5000 39.759 317.072 281.532 195.468 21600 50.270 379.033 335.277 999.587 5000 39.759 317.072 281.532 195.468 22000 50.505 381.775 337.621 337.637 337.621 1010.023 570.039 379.579 377.039 | 3500 | 38.466 | 299.436 | 265.912
266.859 | 121.184 | 17600
17800 | 49.007
49.082 | 368,959 | 326.311
326.787 | | | 3900 38.682 303.510 269.568 132.665 184.00 49.293 370.390 322.849 760.410 4000 38.796 305.548 271.276 140.511 18800 49.429 371.652 329.103 779.919 4200 38.855 306.483 272.104 144.394 19000 49.493 372.175 329.553 809.812 4300 38.855 306.483 272.914 148.282 19200 49.556 372.694 330.000 819.716 4400 38.977 308.293 273.708 152.177 19400 49.618 373.208 330.403 829.634 4500 39.040 309.170 274.486 156.078 19400 49.678 373.717 330.828 839.644 4600 39.040 309.170 274.486 156.078 19400 49.678 373.717 330.882 839.654 4600 39.040 309.170 275.299 163.899 20000 49.787 374.722 331.317 849.505 4700 39.172 310.871 275.998 163.899 20000 49.785 374.722 331.317 849.505 4800 39.241 311.696 276.734 167.820 20200 49.852 375.217 332.177 869.423 4900 39.311 312.506 277.455 171.747 204.00 49.908 375.709 332.601 879.399 5000 39.383 313.301 278.861 175.682 20600 49.908 375.709 332.601 879.399 5000 39.457 314.881 278.861 176.624 20800 50.016 376.679 333.439 899.384 5200 39.552 314.888 279.546 183.573 21000 50.068 377.158 333.439 899.384 5200 39.569 316.343 280.881 191.495 21400 50.171 378.104 334.672 929.440 5500 39.699 316.343 280.881 191.495 21400 50.171 378.104 334.672 929.440 5500 39.955 318.496 228.255 231.488 227.546 835.575 21000 50.068 377.158 333.459 899.384 5700 39.955 318.496 228.255 203.438 22000 50.270 379.034 335.477 999.587 5800 40.021 319.191 283.426 207.436 22200 50.318 379.493 335.875 999.587 5800 40.021 319.191 283.426 207.436 22200 50.505 381.294 337.437 999.917 6400 40.561 323.156 286.697 231.508 2200 50.505 381.294 337.571 999.527 6400 40.750 324.407 288.083 239.740 23200 50.505 381.294 337.637 999.917 6400 40.750 324.407 288.083 239.740 23200 50.505 381.294 337.637 999.917 6400 40.750 324.407 280.084 298.2805 203.438 22000 50.505 381.294 337.537 999.917 6400 40.750 324.407 280.084 298.2805 203.438 2000 50.505 381.294 337.437 999.917 6400 40.750 324.407 280.085 297.753 22000 50.897 338.899 339.690 110.020.377 6400 40.750 324.407 280.280 297.800 200.0807 338.899 339.690 110.020.377 6400 40.750 334.402 200.290.290 299.5 | 3700 | 38.572 | 301.577 | 267.783 | 125.038 | 18000 | 49.154 | 369.508 | 327.259 | 760.484 | | 4000 38.756 305.548 271.276 140.511 18800 49.429 371.652 329.103 779.919 4100 38.756 305.548 271.276 140.511 18800 49.429 371.652 329.103 779.919 4200 38.855 306.483 272.104 144.394 19000 49.453 372.175 329.553 89.812 4200 38.875 307.398 272.914 148.282 19200 49.556 372.694 330.000 819.716 4300 38.975 307.398 273.708 152.177 19400 49.568 373.208 330.443 829.634 4500 39.040 309.170 274.486 156.078 19600 49.618 373.208 330.443 829.634 4500 39.105 310.029 275.249 159.985 19600 49.678 373.717 330.882 839.564 4600 39.105 310.029 275.249 159.985 19600 49.737 374.221 331.317 849.505 4700 39.172 310.871 275.998 163.899 20000 49.795 374.722 331.749 859.458 4800 39.241 311.696 276.734 167.820 20200 49.852 375.217 332.177 869.423 4800 39.381 313.301 278.164 175.682 20600 49.908 375.709 332.601 879.399 5000 39.383 313.301 278.164 175.682 20600 49.908 375.709 332.601 879.399 5000 39.457 314.081 278.861 179.624 20800 50.016 376.679 333.428 889.384 5200 39.552 314.848 279.546 183.575 21000 50.068 377.158 333.428 899.394 5200 39.503 39.603 315.602 280.219 187.530 21200 50.120 377.633 334.264 919.411 5400 39.689 316.343 280.881 191.495 21400 50.711 378.104 334.672 299.440 5500 39.769 317.072 281.552 195.468 21600 50.220 378.570 335.076 939.479 5500 39.785 318.496 282.805 203.438 22000 50.318 379.934 335.875 999.595 5700 39.935 318.496 282.174 199.449 21800 50.270 379.034 335.677 999.579 5600 40.107 319.191 283.426 207.436 22200 50.366 379.948 336.270 999.556 5800 40.107 319.876 284.038 211.443 22400 50.138 379.034 335.875 999.579 5800 40.107 319.876 284.038 211.443 22400 50.570 379.034 335.875 999.577 5800 40.107 319.876 284.038 211.443 22400 50.508 381.735 337.621 999.566 5800 40.750 324.677 388.083 239.740 23200 50.505 381.735 333.603 339.696 1050.377 5800 40.107 319.876 284.038 297.740 23200 50.505 381.735 337.821 1010.023 6600 40.750 324.677 335.275 289.687 337.697 338.891 339.696 1050.884 77000 41.140 332.686 290.228 256.117 23600 50.505 381.394 333.4063 339.696 1050.847 7700 41.339 327.113 292.268 272.653 280.000 50.790 3 | 3800 | 38.627
TR 682 | 302.606
303.610 | 268.686
269.568 | 128.898
132.764 | 18200
18400 | 49.205 | 370.052
370.590 | 328, 189 | 780.174 | | 4400 \$8,977 \$008.293 \$273.708 \$152.117 \$19400 \$49.678 \$373.208 \$330.433 \$629.538 \$4500 \$39.040 \$309.170
\$274.486 \$156.078 \$19600 \$49.678 \$373.717 \$330.882 \$879.584 \$4600 \$39.105 \$310.029 \$275.249 \$159.965 \$19800 \$49.678 \$373.717 \$331.317 \$849.505 \$4700 \$39.172 \$310.871 \$275.998 \$163.899 \$20000 \$49.795 \$374.221 \$331.317 \$849.505 \$4700 \$39.172 \$310.871 \$275.998 \$163.899 \$20000 \$49.795 \$374.221 \$331.317.79 \$899.453 \$4900 \$39.311 \$311.696 \$277.455 \$171.747 \$20400 \$49.908 \$375.709 \$332.177 \$869.423 \$4900 \$39.331 \$312.506 \$277.455 \$171.747 \$20400 \$49.908 \$375.709 \$332.401 \$879.399 \$5000 \$39.383 \$313.301 \$278.164 \$175.682 \$20600 \$49.962 \$376.196 \$333.022 \$889.386 \$1100 \$39.457 \$314.081 \$278.861 \$179.624 \$20800 \$50.168 \$377.158 \$333.835 \$909.392 \$3500 \$39.513 \$315.602 \$280.219 \$187.530 \$21200 \$50.168 \$377.158 \$333.835 \$909.392 \$300 \$39.689 \$316.343 \$280.881 \$191.495 \$21400 \$50.171 \$378.104 \$34.672 \$92.440 \$5500 \$39.689 \$317.767 \$281.532 \$195.468 \$21600 \$50.220 \$378.570 \$335.076 \$39.479 \$5600 \$39.769 \$317.072 \$281.532 \$195.468 \$21600 \$50.220 \$378.570 \$335.076 \$39.479 \$5600 \$39.759 \$317.789 \$282.174 \$199.449 \$21800 \$50.270 \$379.034 \$335.477 \$49.528 \$7700 \$39.955 \$318.496 \$228.805 \$203.438 \$22000 \$50.318 \$379.493 \$335.875 \$995.587 \$800 \$40.107 \$319.876 \$224.641 \$215.458 \$22600 \$50.318 \$379.493 \$335.875 \$995.587 \$800 \$40.107 \$319.876 \$224.641 \$215.458 \$22600 \$50.550 \$381.793 \$335.875 \$995.587 \$600 \$40.107 \$319.876 \$284.641 \$215.458 \$22600 \$50.550 \$381.725 \$337.821 \$1010.023 \$6600 \$40.750 \$324.407 \$288.083 \$297.740 \$235.005 \$50.550 \$381.725 \$337.821 \$1010.023 \$6600 \$40.750 \$324.407 \$288.083 \$297.740 \$235.005 \$50.583 \$381.755 \$337.821 \$1010.023 \$6600 \$40.750 \$324.407 \$288.083 \$297.740 \$235.000 \$50.550 \$381.725 \$338.590 \$339.696 \$100.034 \$7000 \$41.339 \$327.778 \$295.155 \$287.7590 \$24600 \$50.683 \$389.93 \$349.400 \$337.651 \$389.696 \$100.034 \$200.041,742 \$335.242 \$295.555 \$297.7590 \$24600 \$50.683 \$389.93 \$341.148 \$1010.023 \$300.044 \$325.627 \$335.424 \$290.228 \$256.117 \$23600 \$50.683 \$389.93 \$349.400 \$337.651 \$339.696 \$100.034 \$300. | 4000 | 38.738 | 304.590 | 270.432 | 136.635 | 18630 | 49.363 | 371, 123 | 328.648
320 103 | 790.040 | | 4400 \$8,977 \$008.293 \$273.708 \$152.117 \$19400 \$49.678 \$373.208 \$330.433 \$629.538 \$4500 \$39.040 \$309.170 \$274.486 \$156.078 \$19600 \$49.678 \$373.717 \$330.882 \$879.584 \$4600 \$39.105 \$310.029 \$275.249 \$159.965 \$19800 \$49.678 \$373.717 \$331.317 \$849.505 \$4700 \$39.172 \$310.871 \$275.998 \$163.899 \$20000 \$49.795 \$374.221 \$331.317 \$849.505 \$4700 \$39.172 \$310.871 \$275.998 \$163.899 \$20000 \$49.795 \$374.221 \$331.317.79 \$899.453 \$4900 \$39.311 \$311.696 \$277.455 \$171.747 \$20400 \$49.908 \$375.709 \$332.177 \$869.423 \$4900 \$39.331 \$312.506 \$277.455 \$171.747 \$20400 \$49.908 \$375.709 \$332.401 \$879.399 \$5000 \$39.383 \$313.301 \$278.164 \$175.682 \$20600 \$49.962 \$376.196 \$333.022 \$889.386 \$1100 \$39.457 \$314.081 \$278.861 \$179.624 \$20800 \$50.168 \$377.158 \$333.835 \$909.392 \$3500 \$39.513 \$315.602 \$280.219 \$187.530 \$21200 \$50.168 \$377.158 \$333.835 \$909.392 \$300 \$39.689 \$316.343 \$280.881 \$191.495 \$21400 \$50.171 \$378.104 \$34.672 \$92.440 \$5500 \$39.689 \$317.767 \$281.532 \$195.468 \$21600 \$50.220 \$378.570 \$335.076 \$39.479 \$5600 \$39.769 \$317.072 \$281.532 \$195.468 \$21600 \$50.220 \$378.570 \$335.076 \$39.479 \$5600 \$39.759 \$317.789 \$282.174 \$199.449 \$21800 \$50.270 \$379.034 \$335.477 \$49.528 \$7700 \$39.955 \$318.496 \$228.805 \$203.438 \$22000 \$50.318 \$379.493 \$335.875 \$995.587 \$800 \$40.107 \$319.876 \$224.641 \$215.458 \$22600 \$50.318 \$379.493 \$335.875 \$995.587 \$800 \$40.107 \$319.876 \$224.641 \$215.458 \$22600 \$50.550 \$381.793 \$335.875 \$995.587 \$600 \$40.107 \$319.876 \$284.641 \$215.458 \$22600 \$50.550 \$381.725 \$337.821 \$1010.023 \$6600 \$40.750 \$324.407 \$288.083 \$297.740 \$235.005 \$50.550 \$381.725 \$337.821 \$1010.023 \$6600 \$40.750 \$324.407 \$288.083 \$297.740 \$235.005 \$50.583 \$381.755 \$337.821 \$1010.023 \$6600 \$40.750 \$324.407 \$288.083 \$297.740 \$235.000 \$50.550 \$381.725 \$338.590 \$339.696 \$100.034 \$7000 \$41.339 \$327.778 \$295.155 \$287.7590 \$24600 \$50.683 \$389.93 \$349.400 \$337.651 \$389.696 \$100.034 \$200.041,742 \$335.242 \$295.555 \$297.7590 \$24600 \$50.683 \$389.93 \$341.148 \$1010.023 \$300.044 \$325.627 \$335.424 \$290.228 \$256.117 \$23600 \$50.683 \$389.93 \$349.400 \$337.651 \$339.696 \$100.034 \$300. | 4100
4200 | 38.796
38.855 | 305.548
306.483 | 272.104 | 144.394 | 19000 | 49.493 | 372.175 | 329.553 | 809.812 | | 4500 39.040 300.170 274.486 156.078 19600 49.678 373.717 330.882 859.564 4600 39.105 310.029 275.249 159.985 19800 49.737 374.221 331.317 849.505 4700 39.172 310.871 275.998 163.899 20000 49.795 374.722 331.749 859.458 4800 39.241 311.696 276.734 167.820 20200 49.852 375.217 332.177 869.423 4900 39.311 312.506 277.455 171.747 20400 49.908 375.709 332.601 877.399 5000 39.383 3313.301 278.164 175.682 20600 49.962 376.196 333.022 889.384 5100 39.457 314.081 278.861 177.624 20800 50.016 376.679 333.439 899.384 5200 39.532 314.848 279.546 183.573 21000 50.068 377.158 333.853 909.392 5300 39.610 315.602 280.219 187.530 21200 50.068 377.633 334.264 919.411 5400 39.689 316.343 280.881 191.495 21400 50.171 376.104 334.672 929.440 5500 39.769 317.072 281.532 195.468 21600 50.270 379.034 335.477 949.528 5700 39.935 318.496 282.805 203.438 22000 50.318 379.493 335.875 995.887 5800 40.021 319.191 283.426 207.436 22000 50.318 379.493 335.875 995.887 5800 40.021 319.191 283.426 207.436 22000 50.318 379.493 335.875 995.887 5800 40.107 319.876 284.038 211.443 22400 50.413 380.400 336.662 979.733 6000 40.376 321.871 285.821 235.515 22800 50.550 381.294 337.437 999.917 6400 40.561 323.156 286.967 231.608 23000 50.550 381.294 337.437 999.917 6400 40.561 323.156 286.967 231.608 23000 50.550 381.294 337.437 999.917 6400 40.561 323.156 286.967 231.608 23000 50.550 381.294 337.437 999.917 6400 40.561 323.156 286.967 231.608 23000 50.550 381.294 337.437 999.917 6400 40.561 323.156 286.967 231.608 23000 50.550 381.735 337.821 1010.023 6600 40.974 325.627 289.169 247.909 23400 50.640 382.607 338.579 1030.261 7000 41.140 326.816 290.228 256.117 23600 50.085 381.394 337.494 337.437 999.917 6800 40.575 331.331 294.255 289.349 24400 50.853 388.491 337.494 337.437 999.917 6800 41.945 331.311 296.268 272.653 24000 50.777 383.864 330.385 338.954 1040.393 7200 41.339 327.978 291.261 264.365 238.096 50.989 385.588 341.158 111.568 8600 42.760 335.440 299.977 344.000 50.887 385.997 344.040 50.887 389.907 344.946 1211.299 | 4300 | 38.915 | 307.398 | 272.914 | 148.282
152 177 | 19200 | | 372.694 | 330.443 | 819.716
829.634 | | \$\frac{4700}{39}\$, 172 \$\frac{310}{810}\$, 871 \$\frac{275}{998}\$ \$\frac{183}{167}\$, 829 \$\frac{2000}{2000}\$ \$\frac{49}{9.795}\$ \$\frac{374}{374}\$, 722 \$\frac{331}{3749}\$ \$\frac{859}{4590}\$ \$\frac{458}{390}\$ \$\frac{39}{39.381}\$ \$\frac{312}{312}\$, 506 \$\frac{277}{455}\$ \$\frac{171}{1747}\$ 20400 \$\frac{49}{9.988}\$ \$\frac{375}{376}\$, 709 \$\frac{332}{332}\$, 601 \$\frac{879}{399}\$ \$\frac{5900}{5000}\$ \$\frac{39}{39.383}\$ \$\frac{313}{313}\$, 501 \$\frac{278}{316}\$, 464 \$\frac{175}{175}\$, 662 \$\frac{20600}{600}\$ \$\frac{49}{9.962}\$ \$\frac{376}{376}\$, 679 \$\frac{333}{333}\$, 439 \$\frac{99}{392}\$, 386 \$\frac{5100}{39.457}\$ \$\frac{314}{314}\$, 848 \$\frac{279}{279.546}\$ \$\frac{185}{3573}\$ \$\frac{21000}{21000}\$ \$\frac{50.068}{50.106}\$ \$\frac{377}{376}\$, 679 \$\frac{333}{333}\$, 426 \$\frac{499}{919.411}\$ \$\frac{4100}{5000}\$ \$\frac{50.171}{376}\$ \$\frac{333}{334}\$, 264 \$\frac{919}{919.411}\$ \$\frac{4100}{5000}\$ \$\frac{50.171}{376}\$, 104 \$\frac{334}{335}\$, 677 \$\frac{929}{940}\$, 479 \$\frac{5000}{5000}\$ \$\frac{39}{39.769}\$ \$\frac{317}{317}\$, 072 \$\frac{281}{532}\$ \$\frac{195}{5488}\$ \$\frac{21600}{21600}\$ \$\frac{50.220}{50.220}\$ \$\frac{378}{376}\$, 570 \$\frac{335}{355}\$, 477 \$\frac{99}{94.522}\$, 479 \$\frac{500}{5000}\$ \$\frac{39}{39.555}\$ \$\frac{318}{316}\$, 496 \$\frac{282}{620}\$, 805 \$\frac{233}{438}\$ \$\frac{22000}{50.366}\$ \$\frac{379}{379.948}\$ \$\frac{335}{335}\$, 477 \$\frac{99}{94.552}\$, 5800 \$\frac{40.021}{39.191}\$ \$\frac{284}{620}\$, 638 \$\frac{211}{6400}\$ \$\frac{50.435}{5000}\$ \$\frac{50.550}{50.550}\$ \$\frac{381}{500}\$ \$\frac{333.025}{5000}\$ \$\frac{50.550}{5000}\$ \$\frac{331.635}{3000}\$ \$\frac{50.535}{5000}\$ \$\frac{331.621}{3000}\$ \$\frac{50.535}{5000}\$ \$\frac{50.535}{5000}\$ \$\f | 4400
4500 | 38.977
39.040 | 309,170 | 274.486 | 156.078 | 19600 | 49.678 | 373.717 | 330.882 | 839.564 | | 4800 39, 241 311,696 276,734 167,620 20200 49,692 375,217 332,517 697,429 4900 39,311 312,506 277,455 171,747 20400 49,908 375,709 332,501 877,329 5000 39,383 313,301 278,164 175,682 20600 49,962 376,196 333,022 889,384 5200 39,532 314,848 279,546 183,573 21000 50,068 377,158 333,853 909,384 5200 39,532 314,848 279,546 183,573 21000 50,068 377,158 333,853 909,392 5300 39,610 315,602 280,219 187,530 21200 50,120 377,633 334,264 919,411 5400 39,689 316,343 280,881 191,495 21400 50,171 378,104 334,672 929,440 5500 39,769 317,072 281,532 195,468 21600 50,220 378,570 335,076 939,479 5600 39,851 317,789 282,174 199,449 21800 50,270 379,034 335,477 949,528 5700 39,935 318,496 282,805 203,438 22000 50,318 379,493 335,875 959,587 5800 40,021 319,191 283,426 207,436 22200 50,386 379,948 336,270 969,656 5900 40,107 319,876 284,038 211,443 22400 50,413 380,400 336,662 979,733 6000 40,196 320,551 284,641 215,458 22600 50,459 380,849 337,051 989,821 6200 40,376 321,871 285,821 223,515 22800 50,505 381,735 337,821 1010,023 6600 40,750 324,407 288,083 239,740 23200 50,595 382,173 338,201 1020,137 6800 40,944 325,627 289,169 247,909 23400 50,640 382,607 338,579 1030,261 7600 41,539 329,113 292,268 272,653 24000 50,777
383,861 339,326 1100,023 6600 40,750 324,407 288,083 239,740 23200 50,595 382,173 338,201 1020,137 7600 41,539 329,113 292,268 272,653 24000 50,777 383,891 339,366 1040,684 7600 41,742 330,224 293,253 280,981 24200 50,884 383,038 338,579 1030,261 7800 41,945 331,311 294,215 289,349 24400 50,855 384,731 340,427 1030,063 1070,842 7800 41,945 331,311 294,215 289,349 24400 50,855 384,731 340,427 1030,063 1070,842 7800 41,945 331,331 294,215 289,349 24400 50,855 386,771 333,454 1040,333 7700 41,539 329,113 292,268 272,655 24000 50,777 383,866 339,326 1050,534 7800 41,945 331,331 294,215 289,349 24400 50,855 386,771 333,454 1040,393 7700 41,945 331,311 294,215 289,349 24400 50,855 386,771 333,466 339,326 1050,534 7800 41,945 331,331 294,215 289,349 24400 50,855 386,771 333,466 339,326 1050,534 7800 41,945 331,331 294,21 | 4600 | 39.105 | 310.029 | 275.249
275.998 | 159.985
163.899 | 19800
20000 | 49.737
49.795 | 374.221
374.722 | 331.317
331.749 | 849.505
859.458 | | \$100 | 4800 | 39.241 | 311.696 | 276,734 | 167.820 | 20200 | 49.852 | 375.217 | 332.177 | 869.423 | | \$100 | 4900 | 39.311
30.383 | 312.506
313 301 | 277.455
278.164 | 171.747
175.682 | 20400
20600 | 49.908
49.962 | | 332.601
333.022 | 889.386 | | \$500 | | 39.457 | 314.081 | 278.861 | 179.624 | 20800 | 50.016 | 376.679 | 333.439 | 899.384 | | \$400 \$39.689 \$316.343 \$280.881 \$191.495 \$21400 \$50.171 \$378.104 \$334.672 \$929.440 \$500 \$39.769 \$317.072 \$281.532 \$195.468 \$21600 \$50.220 \$378.570 \$35.5076 \$93.479 \$600 \$39.851 \$317.789 \$282.174 \$199.449 \$21800 \$50.270 \$379.034 \$335.477 \$949.528 \$700 \$39.935 \$318.496 \$282.805 \$203.438 \$22000 \$50.318 \$379.493 \$335.477 \$949.528 \$800 \$40.021 \$319.191 \$283.426 \$207.436 \$22200 \$50.366 \$379.948 \$336.270 \$969.656 \$5900 \$40.107 \$319.876 \$284.038 \$211.443 \$22400 \$50.413 \$380.809 \$337.051 \$989.821 \$600 \$40.196 \$320.551 \$284.641 \$215.458 \$2600 \$50.459 \$380.849 \$337.051 \$989.821 \$6200 \$40.376 \$321.871 \$285.821 \$231.608 \$ | 5200
5300 | | 314.848
315 602 | 279.546
280.219 | 187.530 | 21000
21200 | 50.068
50.120 | 377.633 | | | | 5600 39.851 317.789 282.174 199.449 21800 50.270 379.034 335.477 949.528 5700 39.935 318.496 282.805 203.438 2200 50.318 379.493 335.875 959.587 5800 40.021 319.191 283.426 207.436 22200 50.366 379.948 336.270 969.656 5900 40.107 319.876 284.038 211.443 22400 50.413 380.400 336.662 979.733 6000 40.196 320.5551 284.641 215.458 22600 50.459 380.849 337.051 989.821 6200 40.376 321.871 285.821 223.1515 22800 50.505 381.735 337.821 1010.023 6400 40.561 323.156 286.967 231.608 23000 50.550 381.735 337.821 1010.023 6600 40.750 324.407 288.083 239.7440 23200 50.595 382.173 | 5400 | 39.689 | 316.343 | 280.881 | 191.495 | 21400 | 50.171 | 378.104 | 334.672 | 929.440 | | 5700 39.935 318.496 282.805 203.438 22000 50.318 379.493 335.875 959.587 5800 40.021 319.191 283.426 207.436 22200 50.366 379.948 336.270 969.656 5900 40.107 319.876 284.038 211.443 22400 50.413 380.400 336.662 979.733 6000 40.196 320.551 284.641 215.458 22600 50.459 380.849 337.051 989.821 6200 40.376 321.871 285.821 223.515 22800 50.505 381.294 337.437 999.917 6400 40.561 323.156 286.967 231.608 23000 50.550 381.735 337.821 1010.023 6800 40.750 324.407 288.083 239.740 23200 50.595 382.173 338.201 1020.137 6800 40.944 325.627 289.169 247.909 23400 50.640 382.607 | | | | | | 21800 | 50.270 | 379.034 | 335.477 | 949.528 | | 5900 40.107 319.876 284.038 211.443 22400 50.413 380.400 336.862 977.733 6000 40.196 320.551 284.641 215.458 22600 50.459 380.849 337.437 999.917 6200 40.376 321.871 285.821 223.515 22800 50.550 381.294 337.437 999.917 6400 40.561 323.156 286.967 231.608 23000 50.550 381.735 337.821 1010.023 6800 40.750 324.407 288.083 239.740 23200 50.559 382.173 338.579 1030.261 6800 40.944 325.627 289.169 247.909 23400 50.640 382.607 338.579 1030.261 7000 41.140 326.816 290.228 256.117 23600 50.684 383.038 338.994 1040.393 7200 41.339 327.978 291.261 264.365 23800 50.727 383.466 | 5700 | 39.935 | 318.496 | | | 22000 | | | | 0/0 /5/ | | 6000 40.196 320.551 284.641 215.458 2260 50.595 381.294 337.437 999.917 6200 40.376 321.871 285.821 223.515 22800 50.505 381.273 337.821 1010.023 6600 40.561 323.156 286.967 231.608 23000 50.550 381.735 337.821 1010.023 6600 40.750 324.407 288.083 239.7440 23200 50.595 382.173 338.201 1020.137 6800 40.944 325.627 289.169 247.909 23400 50.640 382.607 338.579 1030.261 7000 41.140 326.816 290.228 256.117 23600 50.684 383.038 338.954 1040.393 7200 41.339 327.978 291.261 264.365 23800 50.727 383.466 339.326 1050.534 7400 41.539 329.113 292.268 272.653 24000 50.770 383.891 339.696 1060.684 7600 41.742 330.224 293.253 280.961 24200 50.813 384.312 340.063 1070.842 7800 41.945 331.311 294.215 289.349 24400 50.855 384.731 340.427 1081.009 8000 42.149 332.375 295.155 297.759 24600 50.897 385.146 340.789 1091.184 8200 42.353 333.419 296.076 306.209 24800 50.997 385.146 340.789 1091.184 8200 42.353 333.449 296.076 306.209 24800 50.999 385.558 341.148 1101.368 8400 42.557 334.442 296.977 314.700 25000 50.980 385.968 341.505 1111.560 8600 42.760 335.445 297.860 323.232 25500 51.083 386.978 342.387 1137.076 8800 42.962 336.431 298.726 331.804 26000 51.286 388.947 344.107 1188.261 9200 43.163 337.398 299.574 340.416 26500 51.286 388.947 344.107 1188.261 9200 43.362 338.349 300.407 349.069 27000 51.386 389.907 344.946 1213.929 | 5800
5900 | 40.021
40.107 | 319.191
319.876 | 284.038 | 211.443 | 22400 | 50.413 | 380.400 | 336.662 | 979.733 | | 6400 40.561 323.156 286.967 231.608 23000 50.550 381.735 337.821 1010.023 6600 40.750 324.407 288.083 239.740 23200 50.595 382.173 338.201 1020.137 6800 40.944 325.627 289.169 247.909 23400 50.640 382.607 338.579 1030.261 7000 41.140 326.816 290.228 256.117 23600 50.684 383.038 338.954 1040.393 7200 41.339 327.978 291.261 264.3655 23800 50.727 383.466 339.326 1050.534 7400 41.539 329.113 292.268 272.653 24000 50.770 383.891 339.696 1060.684 7600 41.742 330.224 293.253 280.981 24200 50.813 384.312 340.063 1070.842 7800 41.945 331.311 294.215 289.349 24400 50.855 384.731 340.427 1081.009 8000 42.149 332.375 295.155 297.759 24600 50.897 385.146 340.789 1091.184 8200 42.353 333.419 296.076 306.209 24800 50.939 385.558 341.148 1101.368 8400 42.557 334.442 296.977 314.700 25000 50.980 385.968 341.505 1111.560 8600 42.760 335.445 297.860 323.232 25500 51.083 386.978 342.387 1137.076 8800 42.962 335.431 298.726 331.804 26000 51.285 389.907 344.946 1213.929 9000 43.163 337.398 299.574 340.416 26500 51.286 388.947 344.107 1188.261 9200 43.362 338.349 300.407 349.069 27000 51.386 389.907 344.946 1213.929 9200 43.362 338.349 300.407 349.069 27000 51.386 389.907 344.946 1213.929 9200 43.362 338.349 300.407 349.069 27000 51.386 389.907 344.946 1213.929 | 6000 | 40,196 | 320.551 | 284.641
285 821 | 215.458
223.515 | 22600
22800 | 50.459
50.505 | 380.849
381.294 | 337.051
337.437 | 989.821
999.917 | | 7200 41.539 327.178 291.251 2500 50.770 383.891 339.696 1060.684 7600 41.742 330.224 293.253 280.981 24200 50.813 384.312 340.063 1070.842 7800 41.945 331.311 294.215 289.3349 24400 50.855 384.731 340.427 1081.009 8000 42.149 332.375 295.155 297.759 24600 50.897 385.146 340.789 1091.184 8200 42.353 333.419 296.076 306.209 24800 50.939 385.558 341.148 1101.368 8400 42.557 334.442 296.977 314.700 25000 50.980 385.968 341.505 1111.560 8600 42.760 335.445 297.860 323.232 2500 51.083 386.978 342.387 1137.076 8800 42.760 335.445 297.860 323.232 2500 51.083 386.978 342.387 1137.076 8800 42.962 336.431 298.726 331.804 26000 51.185 387.971 343.254 1162.643 9000 43.163 337.398 299.574 340.416 26500 51.286 388.947 344.107 1188.261 | 6200
6400 | 40.561 | 323.156 | 286.967 | 231.608 | 23000 | 50.550 | 381.735 | 337.821 | 1010.023 | | 7200 41.539 327.178 291.251 2500 50.770 383.891 339.696 1060.684 7600 41.742 330.224 293.253 280.981 24200 50.813 384.312 340.063 1070.842 7800 41.945 331.311 294.215 289.3349 24400 50.855 384.731 340.427 1081.009 8000 42.149 332.375 295.155 297.759 24600 50.897 385.146 340.789 1091.184 8200 42.353 333.419 296.076 306.209 24800 50.939 385.558 341.148 1101.368 8400 42.557 334.442 296.977 314.700 25000 50.980 385.968 341.505 1111.560 8600 42.760 335.445 297.860 323.232 2500 51.083 386.978 342.387 1137.076 8800 42.760 335.445 297.860 323.232 2500 51.083 386.978 342.387 1137.076 8800 42.962 336.431 298.726 331.804 26000 51.185 387.971 343.254 1162.643 9000 43.163 337.398 299.574 340.416 26500 51.286 388.947 344.107 1188.261 | 6600 | 40.750 | 324.407 | | | 23200
23400 | 50.595
50.640 | | | | | 7200 41.539 327.178 291.251 2500 50.770 383.891 339.696 1060.684 7600 41.742 330.224 293.253 280.981 24200 50.813 384.312 340.063 1070.842 7800 41.945 331.311 294.215 289.3349 24400 50.855 384.731 340.427 1081.009 8000 42.149 332.375 295.155 297.759 24600 50.897 385.146 340.789 1091.184 8200 42.353 333.419 296.076 306.209 24800 50.939 385.558 341.148 1101.368 8400 42.557 334.442 296.977 314.700 25000 50.980 385.968 341.505 1111.560 8600 42.760 335.445 297.860 323.232 2500 51.083 386.978 342.387 1137.076 8800 42.760 335.445 297.860 323.232 2500 51.083 386.978 342.387 1137.076 8800 42.962 336.431 298.726 331.804 26000 51.185 387.971 343.254 1162.643 9000 43.163 337.398 299.574 340.416 26500 51.286 388.947 344.107 1188.261 | 7000 | 41.140 | 326.816 | 290.228 | 256.117 | 23600 | | 383. 038 | 338.954 | 1040.393 | | 7800 41.742 330.224 295.15 289.3349 24400 50.855 384.731 340.427 1081.009 8000 42.149 332.375 295.155 297.759 24600 50.897 385.146 340.789 1091.184 8200 42.353 333.419 296.076 306.209 24800 50.939 385.558 341.148 1101.368 8400 42.557 334.442 296.977 314.700 25000 50.980 385.968 341.505 1111.560 8600 42.760 335.445 297.860 323.232 25500 51.083 386.978 342.387 1137.076 8800 42.962 336.431 298.726 331.804 26000 51.185 387.971 343.254 1162.643 9000 43.163 337.398 299.574 340.416 26500 51.286 388.947 344.107 1188.261 9200 43.362
338.349 300.407 349.049 27000 51.386 389.907 344.946 1213.929 | 7200 | 41.339 | 327.978
320 113 | 291.261
292.268 | 264.365
272.653 | 23800
24000 | 50.727
50.770 | 383.466
383.891 | 339.326
339.696 | 1060.684 | | 8000 42.149 332.375 295.155 297.759 24800 50.897 385.148 340.769 1097.1764 8200 42.353 333.419 296.977 314.700 25000 50.980 385.588 341.148 1101.368 8400 42.557 334.442 296.977 314.700 25000 50.980 385.968 341.505 1111.560 8600 42.760 335.445 297.860 323.232 25500 51.083 386.978 342.387 1137.076 8800 42.962 336.431 298.726 331.804 26000 51.185 387.971 343.254 1162.643 9000 43.163 337.398 299.574 340.416 26500 51.286 388.947 344.107 1188.261 9200 43.362 338.349 300.407 349.069 27000 51.386 389.907 344.946 1213.929 | 7600 | 41.742 | 330.224 | 293.253 | 280.981 | 24200 | 50.813 | 384.312 | | | | 8200 42.353 333.419 296.076 306.209 24800 50.939 385.558 341.148 1101.368 8400 42.557 334.442 296.977 314.700 25000 50.980 385.968 341.505 1111.560 8600 42.760 335.445 297.860 323.232 25500 51.083 386.978 342.387 1137.076 8800 42.962 336.431 298.726 331.804 26000 51.185 387.971 343.254 1162.643 9000 43.163 337.398 299.574 340.416 26500 51.286 388.947 344.107 1188.261 9200 43.362 338.349 300.407 349.069 27000 51.386 389.907 344.946 1213.929 | 7800 | 41.945
42.140 | 331.311
332.375 | 294.215
295.155 | 269.349
297.759 | 24400
24600 | 50.897 | | 340.427
340.789 | 1091.184 | | 8400 42.557 334.442 296.97 314.100 25000 50.960 385.968 341.303 1111.360 8600 42.760 335.445 297.860 323.232 25500 51.083 386.978 342.387 1137.076 8800 42.962 336.431 298.726 331.804 26000 51.185 387.971 343.254 1162.643 9000 43.163 337.398 299.574 340.416 26500 51.286 388.947 344.107 1188.261 9200 43.362 338.349 300.407 349.069 27000 51.386 389.907 344.946 1213.929 | 8200 | 42.353 | 333.419 | 296.076 | 306.209 | 24800 | 50.939 | 385.558 | 341.148 | 1101.368 | | 8800 42.962 336.451 298.726 331.300 2000 31.163 367.971 343.234 1102.343
9000 43.163 337.398 299.574 340.416 26500 51.286 388.947 344.107 1188.261
9200 43.362 338.349 300.407 349.069 27000 51.386 389.907 344.946 1213.929 | 8400 | 42.557
42.760 | 534.442
335.445 | 297.860 | 323.232 | 25500 | 51.083 | 386.978 | 342.387 | 1137.076 | | 9200 43.362 338.349 300.407 349.069 27000 51.386 389.907 344.946 1213.929 | 8800 | 42.962 | 336.431 | 298.726 | 331.804 | 26000
26500 | 51,185 | 387.971 | 343.254
344 107 | 1162.643 | | 7500 75000 EEEEE == 407 774 0000 00 000 000 775 770 4070 //7 | 9000
9200 | | 338.349 | 300.407 | 349.069 | 27000 | 51.386 | 389.9 07 | 344.946 | 1213.929 | | 7400 43.337 337.604 211111 111111 1111111 11111111 11111111 | 9400 | 43.559 | 339.284 | 301.224
302.027 | 357.761
366.492 | 27500
28000 | 51.486
51.586 | 390.851
391.779 | 345.772
346.586 | 1239.647
1265.415 | | 9800 43,947 341,107 302,815 375,262 28500 51,686 392,693 347,387 1291,232 | 9800 | 43.947 | 341.107 | 302.815 | 375.262 | 28500 | 51.686 | 392.693 | 347.387 | 1291.232 | | 10000 44.137 341.997 303.390 384.071 29000 31.788 393.393 346.178 1317.100 | 10000 | 44.137 | 341.997
342 873 | | | 29000
29500 | | | | | | 10200 44.324 342.873 304.352 392.917 29500 51.886 394.479 348.953 1343.018 10400 44.509 343.735 305.101 401.800 30000 51.987 395.352 349.719 1368.986 | 10400 | 44.509 | 343.735 | | | 30000 | | | | | Table A-3. JANAF Table for Linear Polyatomic Specie: C₂Cl₂. a. Dichloroethyne (C₂Cl₂) $C_2Cl_2(g)$ | | | J K - 'mol | -1 | | kJ mol-1 - | | | |--------------|----------------------------------|--------------------|----------------------------|------------------------|--------------------|--------------------|--------------------| | T/K | င္မႈ | S° - | [G°-H°(T _p)]/T | H°-H°(T _[) | ΔfH° | ΔſG° | Log K _f | | 0 | 0. | 0. | INPINITE | -14.565 | 206.336 | 206.336 | INFINITE | | 100 | 42.627 | 212.575 | 324.555 | -11.198 | 206.672 | 204.506 | -106.823 | | 200 | 57.837 | 247.336 | 277.809 | -6.095 | 208.085 | 201.843 | -52.716 | | 250 | 62.360 | 26 0.755 | 273.089 | -3.084 | 208.886 | 200.190 | -41.827 | | 298.15 | 65.573 | 272.027 | 272.027 | 0. | 209.618 | 198.448 | -34.767 | | 300 | 65.680 | 272.433 | 272.028 | 0.121 | 209.645 | 198.378 | -34.541 | | 350 | 68.213 | 282.756 | 272.837 | 3.471 | 210.335 | 196.445 | -29.318 | | 400 | 70.218
71.861 | 292.000
300.368 | 274.665 | 6.934 | 210.942 | 194.418 | -25.388
-22.324 | | 450
500 | 73.250 | 300.368
308.013 | 277.063
279.782 | 10.487
14.116 | 211.463
211.900 | 192.320
190.169 | -19.867 | | 600 | 75.515 | 321.577 | | | | | -16.172 | | 70 0 | 77.312 | 333.358 | 285.646
291.639 | 21.559
29.203 | 212.554
212.981 | 185.757
181.255 | -13.525 | | 800 | 78.775 | 343.780 | 297.517 | 37.010 | 213.246 | 176.703 | -11.538 | | 900 | 79.977 | 353.130 | 303.186 | 44.950 | 213.396 | 172.125 | -9.990 | | 1000 | 80.970 | 361.610 | 308.611 | 52.999 | 213.462 | 167.535 | -8.751 | | 1100 | 81.794 | 369.367 | 313.787 | 61.138 | 213.464 | 162.942 | -7.737 | | 1200 | 82.480 | 376.514 | 318.720 | 69.353 | 213.414 | 158.351 | -6.893 | | 1300 | 83.055 | 383.139 | 323.424 | 77.630 | 213.322 | 153.765 | -6.178 | | 1400 | 83.539 | 389.312 | 327.912 | 85.961 | 213.191 | 149.189 | -5.566 | | 1500 | 83.950 | 395.090 | 332.200 | 94.336 | 213.026 | 144.623 | -5.036 | | 1600 | 84.300 | 400.520 | 336.302 | 102.749 | 212.829 | 140.069 | -4.573 | | 1700 | 84.600 | 405.640 | 340.232 | 111.194 | 212.602 | 135.528 | -4.164 | | 1800 | 84.859 | 410.483 | 344.001 | 119.667 | 212.344 | 131.002 | -3.802 | | 1900
2000 | 85.084
85.280 | 415.077
419.447 | 347.622
351 105 | 128.165
136.683 | 212.056 | 126.490
121 995 | -3.477
-3.186 | | | | | 351.105 | | 211.738 | 121.995 | -3.186 | | 2100 | 85.452 | 423.612 | 354.459 | 145.220 | 211.389 | 117.516 | -2.923 | | 2200 | 85.604 | 427.590 | 357.694 | 153.773 | 211.008 | 113.055 | -2.684 | | 2300
2400 | 85.738
85.857 | 431.399
435.050 | 360.816
363.834 | 162.340
170.920 | 210.594
210.146 | 108.611
104.187 | -2.467
-2.268 | | 2500 | 85.964 | 438.557 | 366.753 | 170.520 | 209.662 | 99.782 | -2.085 | | 2600 | 86.059 | 441.931 | 369.580 | 188.112 | 209.142 | 95.397 | -1.917 | | 2700 | 86.144 | 445.180 | 372.320 | 196.723 | 208.583 | 91.033 | -1.761 | | 2800 | 86.222 | 448.315 | 374.978 | 205.341 | 207.987 | 86.689 | -1.617 | | 2900 | 86.291 | 451.341 | 377.560 | 213.967 | 207.351 | 82.368 | -1.484 | | 3000 | 86.355 | 454.268 | 380.068 | 222.599 | 206.677 | 78.070 | -1.359 | | 3100 | 86.412 | 457.100 | 382.508 | 231.238 | 205.963 | 73.795 | -1.243 | | 3200 | 86.465 | 459.845 | 384.882 | 239.881 | 205.211 | 69.543 | -1.135 | | 3300 | 86.513 | 462.506 | 387.194 | 248.530 | 204.421 | 65.316 | -1 034 | | 3400
3500 | 86.557
86.598 | 465.090
467.599 | 389.447
391.644 | 257.184
265.842 | 203.595
202.734 | 61.113
56.935 | -0.939
-0.850 | | | | | | | | | | | 3600
3700 | 86.635
86.670 | 470.039 | 393.788 | 274.503 | 201.840 | 52.782 | -0.766 | | 3700
3800 | 86.670
86.702 | 472.413
474.725 | 395.881
397.926 | 283.169
291.837 | 200.915
199.961 | 48.654
44 551 | -0.687
-0.612 | | 3900 | 86.731 | 476.978 | 399.924 | 300.509 | 198.981 | 40.474 | -0.542 | | 4000 | 86.759 | 479.174 | 401.878 | 309.183 | 197.978 | 36.423 | -0.476 | | 4100 | 86.784 | 481.317 | 403.790 | 317.861 | 196.953 | 32.396 | -0.413 | | 4200 | 86.808 | 483.408 | 405.660 | 326.540 | 195.909 | 28.395 | -0.353 | | 4300 | 86.830 | 485.451 | 407.492 | 335.222 | 194.850 | 24.420 | -0.297 | | 4400 | 86.851 | 487.447 | 409.287 | 343.906 | 193.776 | 20.468 | -0.243 | | 4500 | 86.870 | 489.399 | 411.046 | 352.592 | 192.692 | 16.542 | -0.192 | | 4600 | 86.888 | 491.309 | 412.770 | 361.280 | 191.599 | 12.639 | -0.144 | | 4700 | 86.906 | 493.178 | 414.461 | 369.970 | 190.500 | 8.761 | -0.097 | | 4800 | 86.922 | 495.008 | 416.120 | 378.661 | 189.397 | 4.906 | -0.053 | | 4900 | 86.937 | 496.800 | 417.748 | 387.354 | 188.291 | 1.074 | -0.011 | | 5000 | 86.951 | 498.557 | 419.347 | 396.048 | 187.185 | -2.736 | 0.029 | | 5100 | 86.964 | 500.279 | 420.917 | 404.744 | 186.079 | -6.523 | 0 067 | | 5200 | 86.977 | 501.967 | 422.459 | 413.441 | 184.977 | -10.289 | 0.103 | | 5300
5400 | 86.9 89
87.0 00 | 503.624
505.250 | 423.975
425.465 | 422.140
430.839 | 183.878
182.785 | -14.034
-17.758 | 0.138
0.172 | | 5500 | 87.011 | 506.847 | 426.930 | 439.540 | 181.698 | -17.758
-21.461 | 0.172 | | | | | | | | | | | 5600
5700 | 87.021
87.031 | 508.415
509.955 | 428.372
429.789 | 448.241
456.944 | 180.617 | -25.146 | 0.235
0.264 | | 5800 | 87.031 | 511.469 | 431.185 | 455.944
465.647 | 179.545
178.481 | -28.811
-32.456 | 0.264 | | 5900 | 87.048 | 512.957 | 432.558 | 474.352 | 177.427 | -36.084 | 0.319 | | 6000 | 87.057 | 514.420 | 433.910 | 483.057 | 176.381 | -39.695 | 0.346 | | | | | | | | | | Table A-3. Calculation for Linear Polyatomic Specie: C_2Cl_2 (Continued). | C2Cl2 | h | LINEAR | POLYATON | ATC GAS | |-------|---|--------|----------|---------| | | | | | | | T(K) | Ср | \$0 | -(GO-HO298)/T | NO-N0298 | T(K) | Ср | \$0 | -(G0-H0298)/T | HO-H0298 | |--------------|----------------------------------|--------------------|--------------------|--------------------|-------------------------|----------------------------|--------------------|-------------------------------|----------------------| | 0 | .000 | .000 | 1.0e99 | -14.565 | 10600 | 87.222 | 564.018 | 480.622 | 884.004 | | 100
200 | 42.627
57.837 | 212.574
247.335 | 324.554 | -11.198 | 10800 | 87.225 | 565.649 | 482.181 | 901.448 | | 300 | 65.680 | 272.432 | 277.808
272.027 | -6.095
.121 | 11000 | 87.228 | 567.249 | 483.713 | 918.894 | | 400 | 70.218 | 291,999 | 274.664 | 6.934 | 11200
11400 | 87.231 | 568.821 | 485.219 | 936.340 | | 500 | 73.250 | 308.012 | 279.781 | 14.116 | 11600 | 87.233
87.235 | 570.365
571.882 | 486.699
488.155 |
953.786
971.233 | | 600
700 | 75.515
77.312 | 321.576 | 285.645 | 21.559 | 11800 | 87.238 | 573.373 | 489.587 | 988.680 | | 800 | 77.312
78.775 | 333.357
343.779 | 291.638
297.516 | 29.203
37.010 | 12000
12200 | 87.240 | 574.839 | 490.995 | 1006.128 | | 900 | 79.977 | 353.129 | 303.185 | 44.950 | 12200 | 87.242 | 576.281 | 492.382
493.746 | 1023.576 | | 1000 | 80.970
81.794 | 361.609 | 308.610 | 52.999 | 12400
12600 | 87.244
87.245 | 577.700
579.096 | 493.746
495.090 | 1041.024 | | 1100 | 81.794 | 369.366 | 313.786 | 61.138 | 12800 | 87.247 | 580.470 | 496.414 | 1058.473
1075.923 | | 1200
1300 | 82.480
83.055 | 376.513
383.138 | 318.719
323.423 | 69.353
77.630 | 13000
13200
13400 | 87.249 | 581.823 | 497.717 | 1093.372 | | 1400 | 83.539 | 389.312 | 327.911 | 85.961 | 13200 | 87.250 | 583.155 | 499.002 | 1110.822 | | 1500 | 83.950 | 395.090 | 332.199 | 94.336 | 13600 | 87.252
87.253 | 584.467
585.759 | 500.267
501.515 | 1128.272 | | 1600 | 84.300 | 400.519 | 336.301 | 102.749 | 13800 | 87.255 | 587.033 | 502.745 | 1145.723
1163.174 | | 1700
1800 | 84.600
84.859 | 405.639
410.482 | 340.231
344.000 | 111.194 | 14000 | 87.256
87.257
87.258 | 588.289 | 503.958 | 1180.625 | | 1900 | 85.084 | 415.076 | 347.621 | 119.667
128.165 | 14200 | 87.257 | 589.526 | 505.155 | 1198.076 | | 2000 | 85.280 | 419.446 | 351.104 | 136.683 | 14400 | 87.258
87.260 | 590.747 | 506.335 | 1215.528 | | 2100 | 85.452 | 423.611 | 354.458 | 145.220 | 14600
14800 | 87.261 | 591.950
593.138 | 507.500
508.649 | 1232.979
1250.431 | | 2200
2300 | 85.604
85.738 | 427.590 | 357.693 | 153.773 | 15000 | 87.262 | 594.309 | 509.783 | 1267.884 | | 2400 | 85.857 | 431.398
435.049 | 360.815
363.833 | 162.340
170.920 | 15200 | 87.263 | 595.465 | 510.903 | 1285.336 | | 2500 | 85.964 | 438.556 | 366.752 | 179.511 | 15400 | 87.264 | 596.606 | 512.009 | 1302.789 | | 2600 | 86.059 | 441.930 | 369.579 | 188,112 | 15600
15800 | 87.265
87.266 | 597.732
598.843 | 513.101
514.179 | 1320.242
1337.695 | | 2700
2800 | 86.144 | 445.179 | 372.319 | 196.723 | 16000 | 87,267 | 599.941 | 515.244 | 1355.148 | | 2900 | 8 6.222
8 6.291 | 448.314
451.341 | 374.978
377.559 | 205.341
213.967 | 16200 | 87.267 | 601.025 | 516.297
517.336 | 1372.601 | | 3000 | 86.355 | 454.267 | 380.067 | 222.599 | 16400
16600 | 87.268 | 602.096 | 517.336 | 1390.055 | | 3100 | 86.412 | 457.100 | 382,507 | 231.237 | 16800 | 87.269
87.270 | 603.154
604.199 | 518.364
519.380 | 1407.509
1424.962 | | 3 200 | 86.465 | 459.844 | 384.881 | 239.881 | 17000 | 87.271 | 605.232 | 520.384 | 1442.417 | | 3300
3400 | 86.513
86.557 | 462.505
465.089 | 387.193
389.446 | 248.530
257.184 | 17200
17400 | 87.271
87.271 | 605.232
606.252 | 520.384
521.376
522.357 | 1459.871 | | 3500 | 86.598 | 467.598 | 391.644 | 265.842 | 17400
17600 | 87.272
87.273 | 607.261 | 522.357 | 1477.325 | | 3600 | 86.635 | 470.038 | 393.787 | 274.503 | 17800 | 87.273 | 608.259 | 523.328
524.388 | 1494.779
1512.234 | | 3700
3800 | 86.670 | 472.413 | 395.881 | 283.169 | 17800
18000 | 87.274 | 609.245
610.220 | 524.288
525.237 | 1529.689 | | 3900 | 86.702
86.731 | 474.724
476.977 | 397.925
399.923 | 291.837
300.509 | 18200 | 87.274
87.274
87.275 | 611.184 | 526.176 | 1547.144 | | 4000 | 86.759 | 479.173 | 401.877 | 309.183 | 18400 | 87.275 | 612.138 | 527.106 | 1564.599 | | 4100 | 86.784 | 481.316 | 403.789 | 317.860 | 18600
18800 | 87.276
87.276 | 613.082
614.015 | 528.025
528.935 | 1582.054
1599.509 | | 4200
4300 | 86.808 | 483.407 | 405.660 | 326.540 | 19000 | 87.277 | 614.939 | 529.835 | 1616.964 | | 4400 | 86.830
86.851 | 485.450
487.447 | 407.491
409.286 | 335.222
343.906 | 19200 | 87.277
87.277 | 615.853 | 530.727 | 1634.419 | | 4500 | 86.870 | 489.399 | 411.045 | 352.592 | 19400 | 87.278
87.278 | 616.757 | 531.609 | 1651.875 | | 4600 | 86.888 | 491.308 | 412.769 | 361.280 | 19600
19800 | 87.279 | 617.652
618.538 | 532.482
533.347 | 1669.331
1686.786 | | 4700
4800 | 86.906 | 493.177 | 414.460 | 369.970 | 20000 | 87.279 | 619.415 | 534.203 | 1704.242 | | 4900 | 86.922
86.937 | 495.007
496.799 | 416.119
417.747 | 378.661
387.354 | 20200 | 87.280 | 620.284 | 535.051 | 1721.698 | | 5000 | 86.951 | 498.556 | 419.346 | 396.048 | 20400
20600 | 87.280 | 621.144 | 535.891 | 1739.154 | | 5100 | 86.964 | 500.278 | 420.916 | 404.744 | 20800 | 87.280
87.281 | 621.995
622.839 | 536.723
537.547 | 1756.610
1774.066 | | 5200
5300 | 86.977 | 501.966 | 422.458 | 413.441 | 21000 | 87.281 | 623.674 | 538.363 | 1791.522 | | 5400 | 86.989
87.000 | 503.623
505.249 | 423.974
425.464 | 422.140
430.839 | 21200 | 87.282 | 624.501 | 539.172 | 1808.978 | | 5500 | 87.011 | 506.846 | 426.930 | 439.540 | 21400
21600 | 87.282 | 625.321 | 539.973 | 1826.435 | | 5600 | 87.021 | 508.414 | 428.371 | 448.241 | 21800 | 87.282
87.283 | 626.133
626.937 | 540.767
541.554 | 1843.891
1861.348 | | 5700
5800 | 87.031 | 509.954 | 429.789 | 456.944 | 22000 | 87.283 | 627.734 | 542.334 | 1878.804 | | 5900 | 87.040
87.048 | 511.468
512.956 | 431.184
432.557 | 465.647
474.352 | 22200 | 87.283 | 628.524 | 543.107 | 1896.261 | | 6000 | 87.057 | 514.419 | 433.909 | 483.057 | 22400
22600 | 87.284 | 629.307 | 543.873 | 1913.717 | | 6200 | 87.072 | 517.274 | 436.553 | 500.470 | 22800 | 87.284
87.284 | 630.083
630.852 | 544.633
545.386 | 1931.174 | | 6400
6600 | 87.086 | 520.038
522.718 | 439.119 | 517.886 | 23000 | 87.284 | 631.614 | 546.132 | 1948.631
1966.088 | | 6800 | 87.099
87.110 | 525.319 | 441.612
444.036 | 535.304
552.725 | 23000
23200 | 87.284
87.285 | 631.614
632.370 | 546.872 | 1983.545 | | 7000 | 87.121 | 527.844 | 446.394 | 570.148 | 23400 | 87.285 | 633.119 | 547.606 | 2001.002 | | 7200 | 87.131 | 530.298 | 448.691 | 570.148
587.574 | 23600
23800 | 87.285
87.286 | 633.862
634.598 | 548.334
540.054 | 2018.459 | | 7400 | 87.140 | 532.686 | 450.929 | 605.001 | 24000 | 87.286 | 635.329 | 549.056
549.772 | 2035.916
2053.373 | | 7600
7800 | 87.148
87.156 | 535.010
537.274 | 453.111
455.240 | 622.429 | 24200 | 87.286 | 636.053 | 550.482 | 2070.830 | | 8000 | 87.163 | 539.480 | 457.319 | 639.860
657.292 | 24400 | 87.286 | 636.772 | 551.186 | 2088.287 | | 8200 | 87.170 | 541.633 | 459.349 | 657.292
674.725 | 24600
24800 | 87.287
87.287 | 637.484
638.191 | 551.885
552.578 | 2105.745 | | 8400 | 87.176 | 543.733 | 461.333 | 692.160 | 25000 | 87.287 | 638.892 | 552.578
553.266 | 2123.202
2140.660 | | 8600
8800 | 87.182
87.187 | 545.785 | 463.274
465.172 | 709.595 | 25500 | 87.288 | 640.621 | 554. 96 2 | 2184.303 | | 9000 | 87.192 | 547.789
549.748 | 465.172
467.029 | 727.032
744.470 | 26000 | 87.288 | 642.316 | 556.625 | 2227.947 | | 9200 | 87.197 | 551.665 | 468.849 | 761,909 | 26500
27000 | 87.289
87.289 | 643.978
645.610 | 558.258 | 2271.591 | | 9400 | 87.201 | 553.540 | 470.631 | 779.349
796.789 | 27500 | 87.290 | 645.610
647.212 | 559.860
561.434 | 2315.236
2358.880 | | 9600
9800 | 87.205
87.209 | 555.376
557.174 | 472.377
474.080 | 796.789 | 28000 | 87.290 | 648.784 | 562.980 | 2402.525 | | 10000 | 87.213 | 557.174
558.936 | 474.089
475.769 | 814.231
831.673 | 28500 | 87.290 | 650.329 | 564.499 | 2446.170 | | 10200 | 87.216 | 560.663 | 477.416 | 849.116 | 29000
29500 | 87.291
87.291 | 651.848
653.370 | | 2489.816 | | 10400 | 87.219 | 562.357 | 479.034 | 866.559 | 30000 | 87.291 | 653.340
654.807 | 567.460
568.903 | 2533.461
2577.107 | | | | | | | | | 7.001 | J. 70J | | Table A-4. JANAF Table for Nonlinear Polyatomic Specie: CF₄. a. Tetrafluoromethane (CF₄) $C_1F_4(g)$ | | | J K-¹mol | | | kJ mol-1- | | | |---------------|--------------------|--------------------|--------------------|--------------------|----------------------|----------------------|--------------------| | T/K | ငန္ | 8° - | ICH.(L'))\I | H°-H°(T |) A _f H° | Δ _f G° | Log K _f | | . 0 | 0. | 0. | INPINITE | -12.731 | -927.229 | -927.229 | INPINITE | | 100
200 | 34.745
47.370 | 212.363
239.882 | 306.188
266.577 | -9.383 | -929.755 | -916.822 | 478.899 | | 250 | 54.623 | 251.239 | 262.389 | -5.339
-2.788 | -931.896
-932.645 | -902.995
-895.679 | 235.838
187.142 | | 98.15 | 61.054 | 261.419 | 261.419 | 0. | -933.199 | -888.507 | 155.663 | | 30 0 | 61.288 | 261.798 | 261.420 | 0.113 | -933.218 | -888.229 | 154.654 | | 350 | 67.217 | 271.700 | 262.189 | 3.329 | -933.65 1 | -880.695 | 131.437 | | 400 | 72.400 | 281.022 | 263.966 | 6.822 | -933.970 | -873.107 | 114.016 | | 450 | 76.875 | 289.815 | 266.354 | 10.557 | -934.198 | -865.485 | 100.463 | | 500 | 80.712 | 298.118 | 269.120 | 14.499 | -934.35 1 | -857.841 | 89.618 | | 600 | 86.781 | 313.399 | 275.249 | 22.890 | -934.485 | -842.523 | 73.348 | | 700 | 91.209 | 327.127 | 281.697 | 31.801 | -934.451 | -827.197 | 61.726 | | 800 | 94.476 | 339.530 | 288.164 | 41.093 | -934.298 | -811.884 | 53.011 | | 900
1000 | 96.927
98.797 | 350.806 | 294.507 | 50.669 | -934.065 | -796.596 | 46.233 | | | | 361.119 | 300.660 | 60.459 | -933.778 | -781.337 | 40.813 | | 1100
1200 | 100.249
101.394 | 370.607
379.380 | 306.593 | 70.415 | -933.456
-033.115 | -766.108
-750.000 | 36.379 | | 1300 | 102.312 | 387.534 | 312.298
317.776 | 80.499
90.686 | -933.115
-932.766 | -750.909
-735.739 | 32.686
29.562 | | 1400 | 103.057 | 395.144 | 323.033 | 100.956 | -932.417 | -733.739
-720.597 | 26.886 | | 1500 | 103.669 | 402.276 | 328.081 | 111.293 | -932.075 | -705.479 | 24.567 | | 1600 | 104.178 | 408.983 | 332.930 | 121.686 | -931.744 | -690.383 |
22.539 | | 1700 | 104.605 | 415.312 | 337.591 | 132.126 | -931.428 | -675.308 | 20.750 | | 1800 | 104.966 | 421.302 | 342.077 | 142.605 | -931.125 | -660.251 | 19.160 | | 1900 | 105.275 | 426.986 | 346.398 | 153.117 | -930.835 | -645.210 | 17.738 | | 2000 | 105.540 | 432.392 | 350.563 | 163.658 | -930.556 | -630.184 | 16.459 | | 2100 | 105.770 | 437.547 | 354.584 | 174.224 | -930.283 | -615.173 | 15.302 | | 2200 | 105.970 | 442.473 | 358.467 | 184.811 | -930.011 | -600.174 | 14.250 | | 2300 | 106.146 | 447.187 | 362.223 | 195.417 | -929.735 | -585.187 | 13.290 | | 2400
2500 | 106.301
106.438 | 451.708
456.050 | 365.858
369.379 | 206.040
216.677 | -929.449
-929.146 | -570.213
-555.251 | 12.410 | | | | | | | | | 11.601 | | 2600
2700 | 106.560
106.669 | 460.227
464.251 | 372.794
376.107 | 227.327
237.988 | -928.821
-928.466 | -540.302
-525.365 | 10.855 | | 2800 | 106.767 | 468.132 | 379.325 | 248.660 | -928.466
-928.077 | -525.365
-510.442 | 10.164
9.522 | | 290 0 | 106.855 | 471.880 | 382.452 | 259.342 | -927.649 | -495.534 | 8.926 | | 3000 | 106.935 | 475.504 | 385.494 | 270.031 | -927.177 | -480.642 | 8.369 | | 3100 | 107.007 | 479.012 | 388.454 | 280.728 | -926.656 | -465.766 | 7.848 | | 3200 | 107.073 | 482.410 | 391.337 | 291.432 | -926.084 | -450.907 | 7.360 | | 3300
3400 | 107.132 | 485.706 | 394.147 | 302.143 | -925.458 | -436.068 | 6.902 | | 3400
3500 | 107.187
107.237 | 488.905
492.013 | 396.888
399.561 | 312.859
323.580 | -924.775
-924.034 | -421.248
-406.449 | 6.472 | | | | | | | | | 6.066 | | 3600
3700 | 107.283
107.326 | 495.034
497.974 | 402.171
404.721 | 334.306
345.036 | -923.233
-922.372 | -391.671
-376.018 | 5.683 | | 3800 | 107.326 | 500.837 | 407.213 | 345.036 | -922.372
-921.450 | -376.918
-362.188 | 5.321
4.979 | | 3900 | 107.401 | 503.626 | 409.650 | 366.509 | -920.468 | -347.483 | 4.654 | | 4000 | 107.435 | 506.346 | 412.033 | 377.251 | -919.425 | -332.804 | 4.346 | | 4100 | 107.466 | 508.999 | 414.366 | 387.996 | -918.322 | -318.153 | 4.053 | | 4200 | 107.495 | 511.589 | 416.650 | 398.744 | -917.160 | -303.528 | 3.775 | | 4300 | 107.522 | 514.119 | 418.887 | 409.495 | -915.940 | -288.932 | 3.510 | | 4400
4500 | 107.547
107.571 | 516.591
519 008 | 421.080
423.220 | 420.249 | -914.663 | -274.365
-250.827 | 3.257 | | | | 519.008 | 423.229 | 431.005 | -913.330 | -259.827 | 3.016 | | 4600
4700 | 107.593 | 521.373 | 425.337 | 441.763 | -911.943 | -245.321 | 2.786 | | 4700
4800 | 107.614
107.633 | 523.687
525.953 | 427.405
429.435 | 452.523 | -910.503 | -230.844 | 2.566 | | 4900 | 107.651 | 528.172 | 431.427 | 463.285
474.050 | -909.011
-907.470 | -216.399
-201.986 | 2.355
2.153 | | 5000 | 107.669 | 530.347 | 433.384 | 484.816 | -905.880 | -187.604 | 1.960 | | 5100 | 107.685 | 532.480 | 435.306 | 495.583 | -904.243 | -173.255 | 1.774 | | 5200 | 107.700 | 534.571 | 437.195 | 506.353 | -902.562 | -158.937 | 1.597 | | 5300 | 107.714 | 536.622 | 439.052 | 517.123 | -900.837 | -144.653 | 1.426 | | 5 4 00 | 107.728 | 538.636 | 440.877 | 527.895 | -899.069 | -130.403 | 1.261 | | 5500 | 107.741 | 540.613 | 442.673 | 538.669 | -897.262 | -116.185 | 1.103 | | 5600 | 107.753 | 542.554 | 444.439 | 549.444 | -895.416 | -102.000 | 0.951 | | 5700 | 107.765 | 544.461 | 446.177 | 560.219 | -893.532 | -87.849 | 0.805 | | 5800
5900 | 107.776
107.786 | 546.336
548.178 | 447.888 | 570.997 | -891.613 | -73.731
50.645 | 0.664 | | 800 0 | 107.786 | 549.990 | 449.572
451.231 | 581.775
592.554 | -889.659
-887.672 | -59.645
-45.595 | 0.528 | | | | | | 302.004 | 001.012 | -40.050 | 0.397 | | | | | | | | | | Table A-4. Calculation for Nonlinear Polyatomic Specie: CF₄ (Continued). | CF4 | b. NON-I | LINEAR P | OLYATOMIC | GAS | | | | | | |--------------------|---------------------------------|--------------------|-----------------------------|----------------------|----------------|--------------------|--------------------|----------------------------|----------------------| | T(K) | Ср | 02 | -(G0-H0298)/T | HO-H0298 | T(K) | СР | \$0 | -(GO-HO298)/T | HO-H0298 | | 0
100 | .000
34.745 | .000
212.363 | 1.0e99
306.188 | -12.731
-9.383 | 10600
10800 | 107.994
107.997 | 611.402
613.421 | 508.667
510.588 | 1088.996
1110.595 | | 200 | 47.370 | 239.882 | 266.577 | -5,339 | 11000 | 108.000 | 615.403 | 512.476 | 1132.195 | | 300
400 | 61.287
72.400 | 261.798
281.022 | 261.420
263.966 | .113
6.822 | 11200
11400 | 108.004
108.006 | 617.349
619.261 | 514.331
516.156 | 1153.795
1175.396 | | 500 | 80.711 | 298,118 | 269.119 | 14.499 | 11600 | 108.009 | 621.139 | 517.950 | 1196.998 | | 600 | 86.781 | 313.399 | 275.249 | 22.890 | 11800
12000 | 108.012
108.014 | 622.985
624.801 | 519.714
521.451 | 1218.600
1240.202 | | 700
8 00 | 91.209
94.476 | 327.127
339.530 | 281. <i>6</i> 97
288.164 | 31.801
41.093 | 12200 | 108.017 | 626.586 | 523,159 | 1261.805 | | 900 | 96.926 | 350.806 | 294.507 | 50.669 | 12400 | 108.019 | 628.343 | 524.842
526.498 | 1283.409
1305.013 | | 1000
1100 | 98.796
100.249 | 361.119
370.606 | 300.660
306.593 | 60.459
70.414 | 12600
12800 | 108.021
108.023 | 630.071
631.772 | 528.130 | 1326.617 | | 1200 | 101.394 | 379.380 | 312.298 | 80.499 | 13000 | 108.025 | 633,447 | 520.73R | 1348.222 | | 1300 | 102.312 | 387.534 | 317.775 | 90.686 | 13200
13400 | 108.027
108.029 | 635.096
636.721 | 531.321
532.882 | 1369.827
1391.433 | | 1400
1500 | 103.057
103.669 | 395.144
402.276 | 323.033
328.081 | 100.955
111.293 | 13600 | 108.030 | 638.321 | 534.421 | 1413.039 | | 1600 | 104.178 | 408.983 | 332.929 | 121.686 | 13800 | 108.032 | 639.898 | 535.939 | 1434.645 | | 1700
1800 | 104.605
104. 9 66 | 415.312
421.302 | 337.591
342.077 | 132.126
142.605 | 14000
14200 | 108.034
108.035 | 641.453
642.985 | 537.435
538.911 | 1456.252
1477.859 | | 1900 | 105.275 | 426.985 | 346.397 | 153.117 | 14400 | 108.037 | 644.496 | 540.367 | 1499.466 | | 2000 | 105.540 | 432.392 | 350.563 | 163.658 | 14600
14800 | 108.038
108.039 | 645.986
647.456 | 541.803
543.221 | 1521.073
1542.681 | | 2100
2200 | 105.770
105.970 | 437.547
442.472 | 354.583
358.467 | 174.224
184.811 | 15000 | 108.041 | 648.907 | 544.621 | 1564.289 | | 2300 | 106.146 | 447.187 | 362.223 | 195.417 | 15200 | 108.042 | 650.338 | 546.002 | 1585.897
1607.506 | | 2400 | 106.301
106.438 | 451.708
456.050 | 365.858
369.379 | 206.040
216.677 | 15400
15600 | 108.043
108.044 | 651.750
653.144 | 547.366
548.714 | 1629.114 | | 2500
2600 | 106.560 | 460.227 | 372.794 | 227.327 | 15800 | 108.045 | 654.520 | 550.044 | 1650.723 | | 2700 | 106.669 | 464.251 | 376.107 | 237.988 | 16000
16200 | 108.046
108.047 | 655.880
657.222 | 551.359
552.657 | 1672.333
1693.942 | | 2800
2900 | 106.767
106.855 | 468.132
471.880 | 379.325
382.452 | 248.660
259.341 | 16400 | 108.048 | 658.548 | 553.941 | 1715.551 | | 3000 | 106.935 | 475.504 | 385.494 | 270.031 | 16600 | 108.049 | 659.857 | 555.209 | 1737.161 | | 3100 | 107.007 | 479.011
482.410 | 388.454
391.337 | 280.728
291.432 | 16800
17000 | 108.050
108.051 | 661.151
662.430 | 556.462
557.702 | 1758.771
1780.381 | | 3200
3300 | 107.073
107.132 | 485.706 | 394.147 | 302.142 | 17200 | 108.052 | 663.694 | 558.927 | 1801.991 | | 3400 | 107, 187 | 488.905 | 396.887 | 312.858 | 17400
17600 | 108.053
108.053 | 664.943
666.178 | 560.138
561.336 | 1823.602
1845.212 | | 3500
3600 | 107.237
107.283 | 492.012
495.034 | 399.561
402.171 | 323.580
334.306 | 17800 | 108.054 | 667.399 | 562.521 | 1866.823 | | 3700 | 107.326 | 497.974 | 404.721 | 345.036 | 18000 | 108.055 | 668.606 | 563.693 | 1888.434 | | 3800
3900 | 107.326
107.365 | 500.837
503.626 | 407.213
409.649 | 355.771
366.509 | 18200
18400 | 108.056
108.056 | 669.800
670.981 | 564.853
566.000 | 1910.045
1931.656 | | 4000 | 107.401
107.435 | 506.346 | 412.033 | 377.251 | 18600 | 108.057 | 672.149 | 567.135 | 1953.268 | | 4100 | 107.466 | 508.999 | 414.366 | 387.996 | 18800
19000 | 108.058
108.058 | 673.305
674.448 | 568.258
569.370 | 1974.879
1996.491 | | 4200
4300 | 107.495
107.522 | 511.589
514.119 | 416.650
418.887 | 398.744
409.495 | 19200 | 108.059 | 675.580 | 570.470 | 2018.102 | | 4400 | 107.547 | 516.591 | 421.080 | 420.249 | 19406 | 108.059 | 676,700 | 571.560 | 2039.714 | | 4500
4600 | 107.571
107.593 | 519.008
521.373 | 423.229
425.337 | 431.004
441.763 | 19600
19800 | 108.060
108.060 | 677.808
678.905 | 572.638
573.706 | 2061.326
2082.938 | | 4700 | 107.614 | 523.687 | 427.405 | 452.523 | 20000 | 108.061 | 679.991 | 574.764 | 2104.550 | | 4800 | 107.633 | 525.953 | 429.435
431.427 | 463.285
474.050 | 20200
20400 | 108.062
108.062 | 681.066
682.131 | 575.811
576.848 | 2126.163
2147.775 | | 4900
5000 | 107.651
107.669 | 528.172
530.347 | 433.384 | 484.816 | 20600 | 108.063 | 683.185 | 577.875 | 2169.387 | | 5100 | 107.685 | 532.479 | 435.306 | 495.583 | 20800
21000 | 108.063
108.063 | 684.229
685.264 | 578.893
579.901 | 2191.000
2212.613 | | 5200
5300 | 107.700
107.714 | 534.571
536.622 | 437.195
439.052 | 506.352
517.123 | 21200 | 108.064 | 686.288 | 580.900 | 2234.225 | | 5400 | 107.728 | 538.636 | 440.877 | 527.895 | 21400 | 108.064 | 687.303 | 581.890 | 2255.838 | | 5500
5600 | 107.741
107. 7 53 | 540.613
542.554 | 442.673
444.439 | 538.669
549.443 | 21600
21800 | 108.065
108.065 | 688.308
689.304 | 582.870
583.842 | 2277.451
2299.064 | | 5700 | 107.765 | 544.461 | 446.177 | 560.219
| 22000 | 108.066 | 690.291 | 584.805 | 2320.677 | | 5800 | 107.776 | 546.336 | 447.888 | 570.996 | 22200
22400 | 108.066
108.066 | 691.269
692.238 | 585.760
586.70 6 | 2342.290
2363.904 | | 5900
6000 | 107.786
107.796 | 548.178
549.990 | 449.572
451.231 | 581.775
592.554 | 22600 | 108.067 | 693.198 | 587.645 | 2385.517 | | 6200 | 107.814 | 553.525 | 454.474 | 614.115 | 22800 | 108.067 | 694.151 | 588.575 | 2407.130 | | 6400
6600 | 107.831
107.846 | 556.948
560.266 | 457.623
460.683 | 635.679
657.247 | 23000
23200 | 108.067
108.068 | 695.094
696.030 | 589.497
590.411 | 2428.744
2450.357 | | 6800 | 107.860 | 563.486 | 463.660 | 678.818 | 23400 | 108.068 | 696.958 | 591.318 | 2471.971 | | 7000 | 107.873 | 566.613 | 466.557
469.379 | 700.391
721.967 | 23600
23800 | 108.068
108.069 | 697.877
698.789 | 592.217
593.109 | 2493.584
2515.198 | | 7200
7400 | 107.885
107.896 | 569.652
572.608 | 472.129 | 743.545 | 24000 | 108.069 | 699.694 | 593.993 | 2536.812 | | 7600 | 107.906 | 575.485 | 474.811 | 765.125 | 24200
24400 | 108.069 | 700.591
701.480 | 594.871
505.741 | 2558.426
2580.040 | | 7800
8000 | 107.915
107.923 | 578.288
581.021 | 477.429
479.984 | 786.707
808.291 | 24600 | 108.070
108.070 | 702.362 | 595.741
596.604 | 2601.654 | | 8200 | 107.931 | 583.686 | 482.481 | 829.876 | 24800 | 108.070 | 702.362
703.237 | 597.460 | 2623.268 | | 8400 | 107.938 | 586.287 | 484.922
487.300 | 851.463
873.052 | 25000
25500 | 108.070
108.071 | 704.105
706.245 | 598.310
600.406 | 2644.882
2698.917 | | 8600
8800 | 107.945
107.952 | 588.827
591.308 | 487.309
489.644 | 873.052
894.641 | 26000 | 108.072 | 708.344 | 602.461 | 2752.953 | | 9000 | 107.958 | 593 <i>.7</i> 34 | 491.931 | 916.232 | 26500
27000 | 108.072
108.073 | 710.403 | 604.478 | 2806.989
2861.025 | | 9200
9400 | 107.963
107.968 | 596.107
598.429 | 494.170
496.363 | 937.824
959.418 | 27500 | 108.073 | 712.423
714.406 | 606.459
608.403 | 2915.062 | | 9600 | 107.973 | 600.702 | 498.514 | 981.012 | 28000 | 108.074 | 716.353 | 610.314 | 2969.099 | | 9800
10000 | 107.978
107.982 | 602.929
605.110 | 500.622
502.690 | 1002.607
1024.203 | 28500
29000 | 108.074
108.075 | 718.266
720.146 | 612.191
614.036 | 3023.136
3077.173 | | 10200 | 107.986 | 607.249 | 504.719 | 1045.800 | 29500 | 108.075 | 721.993 | 615.850 | 3131.211 | | 10400 | 107.990 | 607.249
609.345 | 506.711 | 1067.397 | 30000 | 108.076 | 723.809 | 617.635 | 3185.248 | ## APPENDIX B # NOMINAL REACTIONS The following list shows the nominal reactions that were solved simultaneously to obtain the equilibrium mixture composition of decomposed CCl_2F_2 . ## **Nominal Reactions** 1) $2 \text{ CCl}_2\text{F}_2 \rightleftarrows \text{ CCl}_4 + \text{CF}_4$ 2) $CCl_4 \geq C + 2Cl_2$ $CF_4 \rightleftarrows C + 2F_2$ 3) $2 \text{ CCl}_3\text{F} \rightleftarrows \text{CCl}_2\text{F}_2 + \text{CCl}_4$ 4) 5) $2 \text{ CClF}_3 \rightleftarrows \text{CCl}_2\text{F}_2 + \text{CF}_4$ $F_2 \rightleftharpoons 2F$ 6) Cl₂ **孝** 2 Cl 7) 8) $CC1 \rightleftarrows C + C1$ 9) $CF \rightleftarrows C + F$ CIF ₹ CI + F 10) $CF_2 \rightleftarrows C + F_2$ 11) C₂ **≥** 2 C 12) $C_3 \stackrel{\checkmark}{\rightleftharpoons} 3 C$ 13) $C_4 \ngeq 2 C_2$ 14) $C_5 \rightleftarrows C_2 + C_3$ 15) $CF_4 \rightleftarrows CF_3 + F$ 16) CCl₂ **Հ** Cl + CCl 17) $CCl_3 \rightleftharpoons Cl + CCl_2$ 18) 19) $ClF_3 \rightleftarrows ClF + F_2$ $CIF_5 \rightleftarrows CIF_3 + F_2$ 20) $C_2Cl_2 \rightleftarrows C_2 + Cl_2$ 21) $C_2Cl_4 \rightleftarrows C_2Cl_2 + Cl_2$ 22) 23) $C_2Cl_6 \rightleftarrows C_2Cl_4 + Cl_2$ $C_2F_2 \rightleftarrows C_2 + F_2$ 24) $C_2F_4 \not \simeq C_2F_2 + F_2$ 25) $C_2F_6 \rightleftarrows C_2F_4 + F_2$ 26) 27) Cl⁻ ≠ Cl + e⁻ $Cl \stackrel{\triangleright}{\rightleftharpoons} Cl^+ + e^-$ 28) Cl⁺ **≥** Cl⁺⁺ + e⁻ 29) Cl⁺⁺ **₹** Cl⁺⁺⁺ + e⁻ 30) 31) $Cl^{+++} \rightleftarrows Cl^{++++} + e^{-}$ $F \not \supseteq F + e^{-}$ 32) $F \not \stackrel{\text{\tiny T}}{\rightleftharpoons} F^+ + e^-$ 33) $F^+ \rightleftarrows F^{++} + e^-$ 34) 35) $F^{++} \rightleftarrows F^{+++} + e^{-}$ $F^{+++} \rightleftharpoons F^{++++} + e^-$ 36) 37) $C \rightleftarrows C^{+} + e^{-}$ 38) 39) $C^+ \rightleftarrows C^{++} + e^-$ $C^{++} \rightleftarrows C^{+++} + e^{-}$ 40) - C''' **₹** C'''' + e 41) - 42) - C_2 \rightleftarrows $C_2 + e^ CF \rightleftarrows CF^+ + e^-$ 43) - 44) - $CF_2 \rightleftarrows CF_2^+ + e^ CF_3 \rightleftarrows CF_3^+ + e^-$ 45) # High Temperature Reaction Equations - $Cl^{++++} \rightleftarrows Cl^{+5} + e^{-}$ 46) - $Cl^{+5} \rightleftharpoons Cl^{+6} + e^{-}$ 47) - 48) - $CI^{+6} \ngeq CI^{+7} + e^{-}$ $CI^{+7} \rightleftarrows CI^{+8} + e^{-}$ 49) - $Cl^{+8} \ge Cl^{+9} + e^{-}$ 50) - $Cl^{+9} \rightleftarrows Cl^{+10} + e^{-}$ 51) - $F^{+++} \rightleftharpoons F^{+5} + e^-$ 52) - $F^{+5} \rightleftharpoons F^{+6} + e^-$ 53) - 54) - $F^{+6} \rightleftharpoons F^{+7} + e^{-}$ $C^{++++} \rightleftharpoons C^{+5} + e^{-}$ $C^{+5} \rightleftharpoons C^{+6} + e^{-}$ 55) - 56) #### **DISTRIBUTION LIST** #### DNA-TR-94-25 **DEPARTMENT OF DEFENSE** U S EUROPEAN COMMAND/ECJ2-T ATTN: ECJ-3 ASSISTANT TO THE SECRETARY OF DEFENSE ATTN: ECJ2-T ATTN: EXECUTIVE ASSISTANT ATTN: ECJ5-N ATTN: ECJ5N DEFENSE INTELLIGENCE AGENCY ATTN: DB USSSTRATCOM/J531T ATTN: DB-6B ATTN: J-521 ATTN: PAM-1D ATTN: PGI-4 **DEPARTMENT OF THE ARMY** DEFENSE NUCLEAR AGENCY ARMY RESEARCH LABORATORIES ATTN: DDIR G ULLRICH ATTN: TECH LIB ATTN: DFRA JOAN MA PIERRE **DEP CH OF STAFF FOR OPS & PLANS** 2 CY ATTN: IMTS ATTN: DAMO-SWN ATTN: NANF ATTN: DAMO-ZXA ATTN: NASF ATTN: OPNA PED MISSILE DEFENSE SFAE-MD-TSD ATTN: OTA DR P CASTLEBERRY ATTN: CSSD-SA-EV ATTN: OTA R ROHR ATTN: CSSD-SL ATTN: RAES ATTN: SPSD U S ARMY AIR DEFENSE ARTILLERY SCHOOL ATTN: SPSD M GILTRUD ATTN: COMMANDANT ATTN: SPSD MAJ ALTY ATTN: SPSP T FREDERICKSON U S ARMY ARMOR SCHOOL ATTN: SPWE ATTN: ATSB-CTD ATTN: SPWE K PETERSEN ATTN: TECH LIBRARY ATTN: SPWE LEON A WITTER U S ARMY BALLISTIC RESEARCH LAB ATTN: TASS DR C GALLOWAY ATTN: TDTR ATTN: SLCBR-DD-T ATTN: TDTR M HOLM 2 CY ATTN: SLCBR-SS-T **DEFENSE TECHNICAL INFORMATION CENTER** U S ARMY COMD & GENERAL STAFF COLLEGE 2 CY ATTN: DTIC/OC ATTN: ATZL-SWT-A FIELD COMMAND DEFENSE NUCLEAR AGENCY U S ARMY COMM R&D COMMAND DEFENSE CMD ATTN: CSSD-SA-E ATTN: NVCG ATTN: CSSD-SD-A FIELD COMMAND DEFENSE NUCLEAR AGENCY U S ARMY CORPS OF ENGINEERS ATTN: FCTI ATTN: FCTM ATTN: CERD-L ATTN: FCTO U S ARMY ENGINEER DIV HUNTSVILLE ATTN: FCTOE ATTN: HNDED-SY ATTN: FCTT-T E RINEHART ATTN: FCTT DR BALADI U.S. ARMY ENGR WATERWAYS EXPER STATION ATTN: FCTT J HUGHES ATTN: C WELCH CEWES-SE-R ATTN: FCTTS E MARTINEZ ATTN: CEWES J K INGRAM ATTN: CEWES-SD NATIONAL DEFENSE UNIVERSITY ATTN: CEWES-SS-R DR BALSARA ATTN: NWCO ATTN: J ZELASKO CEWES-SD-R **NET ASSESSMENT** ATTN: RESEARCH LIBRARY ATTN: DOCUMENT CONTROL U S ARMY FOREIGN SCIENCE & TECH CTR OASD ATTN: IAFSTC-RMT ATTN: DUSP/P U S ARMY INFANTRY CENTER ATTN: USD/P ATTN: ATSH-CD-CS STRATEGIC & SPACE SYSTEMS U.S. ARMY MISSILE COMMAND ATTN: DR SCHNEITER ATTN: RD-AC-FS **TECHNICAL RESOURCES CENTER** U S ARMY NUCLEAR & CHEMICAL AGENCY ATTN: C-332 ATTN: JNGO ATTN: MONA-NU DR D BASH #### **DNA-TR-94-25 (DL CONTINUED)** U S ARMY RESEARCH DEV & ENGRG CTR ATTN: STRNC-YSD G CALDARELLA U S ARMY WAR COLLEGE ATTN: LIBRARY US ARMY MATERIEL SYS ANALYSIS ACTVY ATTN: AMXSY-CR USA CML & BIOLOGICAL DEFENSE AGENCY ATTN: AMSCB-BDL J CANNALIATO **DEPARTMENT OF THE NAVY** CARRIER GROUP ONE ATTN: COMMANDER CARRIER GROUP 2 ATTN: COMMANDER CARRIER GROUP 3 ATTN: COMMANDER CARRIER GROUP 4 ATTN: COMMANDER CARRIER GROUP 5 ATTN: COMMANDER CARRIER GROUP 8 ATTN: COMMANDER CRUISER DESTROYER GROUP ONE ATTN: COMMANDER CRUISER-DESTROYER GROUP 3 ATTN: COMMANDER CRUISER-DESTROYER GROUP 5 ATTN: COMMANDER DEPARTMENT OF THE NAVY ATTN: CODE R44 R FERGUSON ATTN: CODE R44 P COLLINS FIGHTER AIRBORNE EARLY WARNING WING ATTN: COMMANDER LIGHT ATTACK WING ATTN: COMMANDER NAVAL AIR FORCE ATTN: COMMANDER NAVAL POSTGRADUATE SCHOOL ATTN: CODE 52 LIBRARY NAVAL RESEARCH LABORATORY ATTN: CODE 1220 ATTN: CODE 2600 TECHNICAL LIBRARY ATTN: CODE 4040 D BOOK ATTN: CODE 4400 J BORIS ATTN: CODE 5227 RESEARCH REPORT NAVAL SURFACE FORCE ATTN: COMMANDER NAVAL SURFACE FORCE ATTN: COMMANDER NAVAL SURFACE WARFARE CENTER ATTN: CODE K42 R ROBINSON ATTN: CODE K42 S HUGHES NAVAL TECHNICAL INTELLIGENCE CTR ATTN: NTIC-DA30 NAWCWPNSDIV DETACHMENT ATTN: CLASSIFIED LIBRARY NUCLEAR WEAPONS TNG GROUP, ATLANTIC ATTN: CODE 221 ATTN: DOCUMENT CONTROL OFFICE OF CHIEF NAVAL OPERATIONS ATTN: NUC AFFAIRS & INT'L NEGOT BR OFFICE OF NAVAL RESEARCH ATTN: CODE 1132SM THEATER NUCLEAR WARFARE PROGRAM OFC ATTN: PMS 423 CDR DOOLING U S NAVY SIXTH FLEET ATTN: COMMANDER **DEPARTMENT OF THE AIR FORCE** AFIS/INT ATTN: INT AIR COMBAT COMMAND ATTN: LT COL R EASTERLIN AIR UNIVERSITY LIBRARY ATTN: AUL-LSE DEPUTY CHIEF OF STAFF FOR PLANS & OPERS ATTN: AFXOOSS DET 1 ATTN: CCSA HEADQUARTERS USAF/IN SPACE DIVISION/CWH ATTN: CWH DSCS 111 U S AIR FORCES IN EUROPE/DENT ATTN: USAFE/DENT U S AIR FORCES IN EUROPE/DOQ ATTN: USAFE/DOQ WRIGHT RESEARCH & DEVELOPMENT CENTER ATTN: D RICHMOND **DEPARTMENT OF ENERGY** DPEARTMENT OF ENERGY ATTN: DR C V CHESTER #### **DNA-TR-94-25 (DL CONTINUED)** LAWRENCE LIVERMORE NATIONAL LAB ATTN: ALLEN KUHL ATTN: C E ROSENKILDE ATTN: J BELL ATTN: L-20 ATTN: L-35 ATTN: L-389 ATTN: W HOGAN ATTN: R PERRETT ATTN: TECH LIBRARY ATTN: Z DIVISION LIBRARY LOS ALAMOS NATIONAL LABORATORY ATTN: REPORT LIBRARY ATTN: TECH LIBRARY SANDIA NATIONAL LABORATORIES ATTN: A CHABAI DEPT-9311 ATTN: DIV 9114 A SEHMER ATTN: DIV 9311 L R HILL ATTN: TECH LIB 3141 U S DEPARTMENT OF ENERGY OFFICE OF MILITARY APPLICATIONS ATTN: OMA/DP-252 MAJ D WADE #### **OTHER GOVERNMENT** CENTRAL INTELLIGENCE AGENCY ATTN: N10 STRATEGIC SYS ATTN: OSWR/NED 5S09 NHB FEDERAL EMERGENCY MANAGEMENT AGENCY ATTN:
NP-CP ATTN: OFC OF CIVIL DEFENSE U.S. DEPARTMENT OF STATE ATTN: PM/TMP #### **DEPARTMENT OF DEFENSE CONTRACTORS** ADVANCED RESEARCH & APPLICATIONS CORP ATTN: SECURITY OFFICE AEROSPACE CORP ATTN: D LYNCH ATTN: H MIRELS ATTN: LIBRARY ACQUISITION APPLIED & THEORETICAL MECHANICS, INC ATTN: J M CHAMPNEY APPLIED RESEARCH ASSOCIATES ATTN: R FLORY APPLIED RESEARCH ASSOCIATES, INC. ATTN: J KEEFER ATTN: N ETHRIDGE APPLIED RESEARCH ASSOCIATES, INC ATTN: D COLE ATTN: JLBRATTON 3 CY ATTN: K BELL ATTN: N BAUM APPLIED RESEARCH ASSOCIATES, INC ATTN: R FRANK APPLIED RESEARCH ASSOCIATES, INC ATTN: J L DRAKE APPLIED RESEARCH INC ATTN: J BOSCHMA ARES CORP ATTN: A DEVERILL BDM FEDERAL INC ATTN: E DORCHAK ATTN: J BRADDOCK ATTN: J STOCKTON CARPENTER RESEARCH CORP ATTN: H J CARPENTER E-SYSTEMS, INC ATTN: TECH INFO CTR FLUID PHYSICS IND ATTN: R TRACI GEO CENTERS, INC ATTN: B NELSON HORIZONS TECHNOLOGY, INC ATTN: B LEE ATTN: E TAGGART IIT RESEARCH INSTITUTE ATTN: DOCUMENTS LIBRARY ATTN: M JOHNSON INFORMATION SCIENCE, INC ATTN: W DUDZIAK INSTITUTE FOR DEFENSE ANALYSES ATTN: CLASSIFIED LIBRARY ATTN: J GROTE JAYCOR ATTN: CYRUS P KNOWLES ATTN: R SULLIVAN KAMAN SCIENCES CORP ATTN: D CAYNE ATTN: LIBRARY ATTN: R RUETENIK KAMAN SCIENCES CORP ATTN: JOHN KEITH KAMAN SCIENCES CORP ATTN: D MOFFETT 2 CY ATTN: DASIAC KAMAN SCIENCES CORPORATION 2 CY ATTN: DASIAC KTECH CORP ATTN: D JOHNSON LOCKHEED MISSILES & SPACE CO, INC ATTN: TECH INFO CTR #### **DNA-TR-94-25 (DL CONTINUED)** LOGICON R & D ASSOCIATES ATTN: CKBLEE ATTN: D SIMONS 2 CY ATTN: DOCUMENT CONTROL ATTN: DOUGLAS C YOON ATTN: LIBRARY ATTN: R GILBERT LOGICON R & D ASSOCIATES ATTN: S WOODFORD LOGICON R & D ASSOCIATES 2 CY ATTN: A LAMPSON ATTN: B KILLIAN 2 CY ATTN: G GANONG 3 CY ATTN: J RENICK ATTN: J WALTON 2 CY ATTN: P CROWELL LOGICON R & D ASSOCIATES ATTN: E FURBEE ATTN: J WEBSTER LORAL VOUTHG SYSTEMS CORP 2 CY ATTN: LIBRARY EM-08 MAXWELL LABORATORIES INC ATTN: C PETERSEN ATTN: G SCHNEYER ATTN: J BARTHEL ATTN: K D PYATT JR ATTN: LIBRARY ATTN: P COLEMAN ATTN: T PIERCE MCDONNELL DOUGLAS CORPORATION ATTN: R HALPRIN MOLZEN CORBIN & ASSOCIATES, P.A. ATTN: TECHNICAL LIBRARY NICHOLS RESEARCH CORPORATION ATTN: R BYRN ORION RESEARCH INC ATTN: J E SCHOLZ PACIFIC-SIERRA RESEARCH CORP ATTN: H BRODE ATTN: R LUTOMIRSKI 36 CY ATTN: S FUGIMURA PACIFIC-SIERRA RESEARCH CORP ATTN: D GORMLEY ATTN: M ALLERDING PHYSITRON INC ATTN: M PRICE S-CUBED ATTN: C NEEDHAM SCIENCE APPLICATIONS INTL CORP ATTN: C HSIAO ATTN: D KAUL ATTN: E SWICK ATTN: FYSU ATTN: G EGGUM ATTN: G EGGUM ATTN: G T PHILLIPS ATTN: H WILSON ATTN: L HUNT ATTN: RJBEYSTER ATTN: TECHNICAL REPORT SYSTEM SCIENCE APPLICATIONS INTL CORP ATTN: DIV 411 R WESTERFELDT SCIENCE APPLICATIONS INTL CORP ATTN: J GUEST SCIENCE APPLICATIONS INTL CORP 2 CY ATTN: H SINGER ATTN: J COCKAYNE ATTN: W LAYSON SCIENCE APPLICATIONS INTL CORP ATTN: K SITES SCIENCE APPLICATIONS INTL CORP ATTN: R CRAVER SCIENCE APPLICATIONS INTL CORP ATTN: G BINNINGER SRI INTERNATIONAL ATTN: DR JIM GRAN ATTN: E UTHE ATTN: J GIOVANOLA ATTN: J SIMONS ATTN: M SANAI TECHNICO SOUTHWEST INC ATTN: S LEVIN TITAN CORPORATION ATTN: J ROCCO ATTN: J THOMSEN TITAN CORPORATION (THE) ATTN: LIBRARY TRW INC ATTN: TIC TRW SPACE & DEFENSE SECTOR ATTN: W WAMPLER W J SCHAFER ASSOCIATES, INC ATTN: D YOUMANS ATTN: W BUITENHUYS WASHINGTON STATE UNIVERSITY ATTN: PROF Y GUPTA WEIDLINGER ASSOC, INC ATTN: H LEVINE WEIDLINGER ASSOCIATES, INC ATTN: T DEEVY WEIDLINGER ASSOCIATES, INC ATTN: I SANDLER ATTN: M BARON